Your browser doesn't support javascript.
loading
Harnessing Smectic Ordering for Electric-Field-Driven Guided-Growth of Surface Topography in a Liquid Crystal Polymer.
Lyu, Pengrong; Feng, Jian; Zeng, Yishu; Zhang, Yang; Wu, Sihan; Gao, Jie; Hu, Xiaowen; Chen, Jiawen; Zhou, Guofu; Zhao, Wei.
Afiliação
  • Lyu P; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Feng J; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Zeng Y; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Zhang Y; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Wu S; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Gao J; YongJiang Laboratory, No. 1792 Cihai South Road, Ningbo, 315202, P. R. China.
  • Hu X; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Chen J; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
  • Zhou G; SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, No. 378, West Waihuan Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
  • Zhao W; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
Small ; 20(22): e2307726, 2024 May.
Article em En | MEDLINE | ID: mdl-38126679
ABSTRACT
The guided-growth strategy has been widely explored and proved its efficacy in fabricating surface micro/nanostructures in a variety of systems. However, soft materials like polymers are much less investigated partly due to the lack of strong internal driving mechanisms. Herein, the possibility of utilizing liquid crystal (LC) ordering of smectic liquid crystal polymers (LCPs) to induce guided growth of surface topography during the formation of electrohydrodynamic (EHD) patterns is demonstrated. In a two-stage growth, regular stripes are first found to selectively emerge from the homogeneously aligned region of an initially flat LCP film, and then extend neatly along the normal direction of the boundary line between homogeneous and homeotropic alignments. The stripes can maintain their directions for quite a distance before deviating. Coupled with the advanced tools for controlling LC alignment, intricate surface topographies can be produced in LCP films starting from relatively simple designs. The regularity of grown pattern is determined by the LC ordering of the polymer material, and influenced by conditions of EHD growth. The proposed approach provides new opportunities to employ LCPs in optical and electrical applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article