Your browser doesn't support javascript.
loading
Adaptive Tensor-Based Feature Extraction for Pupil Segmentation in Cataract Surgery.
IEEE J Biomed Health Inform ; 28(3): 1599-1610, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38127596
ABSTRACT
Cataract surgery remains the only definitive treatment for visually significant cataracts, which are a major cause of preventable blindness worldwide. Successful performance of cataract surgery relies on stable dilation of the pupil. Automated pupil segmentation from surgical videos can assist surgeons in detecting risk factors for pupillary instability prior to the development of surgical complications. However, surgical illumination variations, surgical instrument obstruction, and lens material hydration during cataract surgery can limit pupil segmentation accuracy. To address these problems, we propose a novel method named adaptive wavelet tensor feature extraction (AWTFE). AWTFE is designed to enhance the accuracy of deep learning-powered pupil recognition systems. First, we represent the correlations among spatial information, color channels, and wavelet subbands by constructing a third-order tensor. We then utilize higher-order singular value decomposition to eliminate redundant information adaptively and estimate pupil feature information. We evaluated the proposed method by conducting experiments with state-of-the-art deep learning segmentation models on our BigCat dataset consisting of 5,700 annotated intraoperative images from 190 cataract surgeries and a public CaDIS dataset. The experimental results reveal that the AWTFE method effectively identifies features relevant to the pupil region and improved the overall performance of segmentation models by up to 2.26% (BigCat) and 3.31% (CaDIS). Incorporation of the AWTFE method led to statistically significant improvements in segmentation performance (P < 1.29 × 10-10 for each model) and yielded the highest-performing model overall (Dice coefficients of 94.74% and 96.71% for the BigCat and CaDIS datasets, respectively). In performance comparisons, the AWTFE consistently outperformed other feature extraction methods in enhancing model performance. In addition, the proposed AWTFE method significantly improved pupil recognition performance by up to 2.87% in particularly challenging phases of cataract surgery.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Catarata / Extração de Catarata Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Catarata / Extração de Catarata Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article