Your browser doesn't support javascript.
loading
Piercing of the Human Parainfluenza Virus by Nanostructured Surfaces.
Mah, Samson W L; Linklater, Denver P; Tzanov, Vassil; Le, Phuc H; Dekiwadia, Chaitali; Mayes, Edwin; Simons, Ranya; Eyckens, Daniel J; Moad, Graeme; Saita, Soichiro; Joudkazis, Saulius; Jans, David A; Baulin, Vladimir A; Borg, Natalie A; Ivanova, Elena P.
Afiliação
  • Mah SWL; School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
  • Linklater DP; CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
  • Tzanov V; School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
  • Le PH; Department of Biomedical Engineering, Graeme Clarke Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
  • Dekiwadia C; Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain.
  • Mayes E; School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
  • Simons R; RMIT Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia.
  • Eyckens DJ; RMIT Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia.
  • Moad G; CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
  • Saita S; CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
  • Joudkazis S; CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
  • Jans DA; The KAITEKI Institute Inc., Chiyoda-ku, Tokyo 100-8251, Japan.
  • Baulin VA; Optical Science Centre, Swinburne University of Technology, Hawthorn, Melbourne, Victoria 3122, Australia.
  • Borg NA; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia.
  • Ivanova EP; Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain.
ACS Nano ; 18(2): 1404-1419, 2024 Jan 16.
Article em En | MEDLINE | ID: mdl-38127731
ABSTRACT
This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por Paramyxoviridae / Nanoestruturas Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infecções por Paramyxoviridae / Nanoestruturas Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article