Omadacycline pharmacokinetics/pharmacodynamics and efficacy against multidrug-resistant Mycobacterium tuberculosis in the hollow fiber system model.
Antimicrob Agents Chemother
; 68(2): e0108023, 2024 Feb 07.
Article
em En
| MEDLINE
| ID: mdl-38131673
ABSTRACT
Seventy-five years ago, first-generation tetracyclines demonstrated limited efficacy in the treatment of tuberculosis but were more toxic than efficacious. We performed a series of pharmacokinetic/pharmacodynamic (PK/PD) experiments with a potentially safer third-generation tetracycline, omadacycline, for the treatment of multidrug-resistant tuberculosis (MDR-TB). Mycobacterium tuberculosis (Mtb) H37Rv and an MDR-TB clinical strain (16D) were used in the minimum inhibitory concentration (MIC) and static concentration-response studies in test tubes, followed by a PK/PD study using the hollow fiber system model of TB (HFS-TB) that examined six human-like omadacycline doses. The inhibitory sigmoid maximal effect (Emax) model and Monte Carlo experiments (MCEs) were used for data analysis and clinical dose-finding, respectively. The omadacycline MIC for both Mtb H37Rv and MDR-TB clinical strain was 16 mg/L but dropped to 4 mg/L with daily drug supplementation to account for omadacycline degradation. The Mycobacteria Growth Indicator Tube MIC was 2 mg/L. In the test tubes, omadacycline killed 4.39 log10 CFU/mL in 7 days. On Day 28 of the HFS-TB study, the Emax was 4.64 log10 CFU/mL, while exposure mediating 50% of Emax (EC50) was an area under the concentration-time curve to MIC (AUC0-24/MIC) ratio of 22.86. This translates to PK/PD optimal exposure or EC80 as AUC0-24/MIC of 26.93. The target attainment probability of the 300-mg daily oral dose was 90% but fell at MIC â§4 mg/L. Omadacycline demonstrated efficacy and potency against both drug-susceptible and MDR-TB. Further studies are needed to identify the omadacycline effect in combination therapy for the treatment of both drug-susceptible and MDR-TB.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tuberculose Resistente a Múltiplos Medicamentos
/
Mycobacterium tuberculosis
Limite:
Humans
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article