Your browser doesn't support javascript.
loading
Trends in confinement-induced cell migration and multi-omics analysis.
Lu, Jiayin; Chen, Xue-Zhu; Liu, Yixin; Liu, Yan-Jun; Liu, Baohong.
Afiliação
  • Lu J; Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China.
  • Chen XZ; Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China.
  • Liu Y; Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China.
  • Liu YJ; Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China. Yanjun_Liu@fudan.edu
  • Liu B; Department of ChemistryState Key Lab of Molecular Engineering of PolymersShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological HospitalShanghai Xuhui Central Hospital, Zhongshan-Xuhui HospitalFudan University, Shanghai, China. bhliu@fudan.edu.cn.
Anal Bioanal Chem ; 416(9): 2107-2115, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38135761
ABSTRACT
Cell migration is an essential manner of different cell lines that are involved in embryological development, immune responses, tumorigenesis, and metastasis in vivo. Physical confinement derived from crowded tissue microenvironments has pivotal effects on migratory behaviors. Distinct migration modes under a heterogeneous extracellular matrix (ECM) have been extensively studied, uncovering potential molecular mechanisms involving a series of biological processes. Significantly, multi-omics strategies have been launched to provide multi-angle views of complex biological phenomena, facilitating comprehensive insights into molecular regulatory networks during cell migration. In this review, we describe biomimetic devices developed to explore the migratory behaviors of cells induced by different types of confined microenvironments in vitro. We also discuss the results of multi-omics analysis of intrinsic molecular alterations and critical pathway dysregulations of cell migration under heterogeneous microenvironments, highlighting the significance of physical confinement-triggered intracellular signal transduction in order to regulate cellular behaviors. Finally, we discuss both the challenges and promise of mechanistic analysis in confinement-induced cell migration, promoting the development of early diagnosis and precision therapeutics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Matriz Extracelular / Multiômica Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Matriz Extracelular / Multiômica Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article