Your browser doesn't support javascript.
loading
Molecularly informed field theory for estimating critical micelle concentrations of intrinsically disordered protein surfactants.
Nguyen, My V T; Dolph, Kate; Delaney, Kris T; Shen, Kevin; Sherck, Nicholas; Köhler, Stephan; Gupta, Rohini; Francis, Matthew B; Shell, M Scott; Fredrickson, Glenn H.
Afiliação
  • Nguyen MVT; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Dolph K; Department of Chemistry, University of California, Berkeley, California 94720, USA.
  • Delaney KT; Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
  • Shen K; Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
  • Sherck N; Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
  • Köhler S; BASF Corporation, Iselin, New Jersey 08830, USA.
  • Gupta R; BASF SE, Ludwigshafen am Rhein 67056, Germany.
  • Francis MB; California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA.
  • Shell MS; Department of Chemistry, University of California, Berkeley, California 94720, USA.
  • Fredrickson GH; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Chem Phys ; 159(24)2023 Dec 28.
Article em En | MEDLINE | ID: mdl-38149742
ABSTRACT
The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Intrinsicamente Desordenadas / Micelas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Intrinsicamente Desordenadas / Micelas Idioma: En Ano de publicação: 2023 Tipo de documento: Article