Your browser doesn't support javascript.
loading
A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma.
Chen, Zhen; Yu, Yao; Liu, Shuo; Du, Wen; Hu, Leihao; Wang, Congwei; Li, Jiaqi; Liu, Jianbo; Zhang, Wenbo; Peng, Xin.
Afiliação
  • Chen Z; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Yu Y; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Liu S; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Du W; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Hu L; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Wang C; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Li J; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Liu J; Huafang Hanying Medical Technology Co., Ltd, No.19, West Bridge Road, Miyun District, Beijing, 101520, People's Republic of China.
  • Zhang W; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
  • Peng X; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing
Clin Oral Investig ; 28(1): 39, 2023 Dec 27.
Article em En | MEDLINE | ID: mdl-38151672
ABSTRACT

OBJECTIVES:

In this study, we constructed and validated models based on deep learning and radiomics to facilitate preoperative diagnosis of cervical lymph node metastasis (LNM) using contrast-enhanced computed tomography (CECT). MATERIALS AND

METHODS:

CECT scans of 100 patients with OSCC (217 metastatic and 1973 non-metastatic cervical lymph nodes development set, 76 patients; internally independent test set, 24 patients) who received treatment at the Peking University School and Hospital of Stomatology between 2012 and 2016 were retrospectively collected. Clinical diagnoses and pathological findings were used to establish the gold standard for metastatic cervical LNs. A reader study with two clinicians was also performed to evaluate the lymph node status in the test set. The performance of the proposed models and the clinicians was evaluated and compared by measuring using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE).

RESULTS:

A fusion model combining deep learning with radiomics showed the best performance (ACC, 89.2%; SEN, 92.0%; SPE, 88.9%; and AUC, 0.950 [95% confidence interval 0.908-0.993, P < 0.001]) in the test set. In comparison with the clinicians, the fusion model showed higher sensitivity (92.0 vs. 72.0% and 60.0%) but lower specificity (88.9 vs. 97.5% and 98.8%).

CONCLUSION:

A fusion model combining radiomics and deep learning approaches outperformed other single-technique models and showed great potential to accurately predict cervical LNM in patients with OSCC. CLINICAL RELEVANCE The fusion model can complement the preoperative identification of LNM of OSCC performed by the clinicians.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Carcinoma de Células Escamosas / Aprendizado Profundo / Neoplasias de Cabeça e Pescoço Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Bucais / Carcinoma de Células Escamosas / Aprendizado Profundo / Neoplasias de Cabeça e Pescoço Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article