Your browser doesn't support javascript.
loading
Genes controlling hydrolysate toxin tolerance identified by QTL analysis of the natural Saccharomyces cerevisiae BCC39850.
Sornlek, Warasirin; Sonthirod, Chutima; Tangphatsornruang, Sithichoke; Ingsriswang, Supawadee; Runguphan, Weerawat; Eurwilaichtr, Lily; Champreda, Verawat; Tanapongpipat, Sutipa; Schaap, Peter J; Martins Dos Santos, Vitor A P.
Afiliação
  • Sornlek W; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Sonthirod C; The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
  • Tangphatsornruang S; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Ingsriswang S; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Runguphan W; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Eurwilaichtr L; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Champreda V; National Energy Technology Center, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Tanapongpipat S; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
  • Schaap PJ; National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand. sutipa@biotec.or.th.
  • Martins Dos Santos VAP; The Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
Appl Microbiol Biotechnol ; 108(1): 21, 2024 Dec.
Article em En | MEDLINE | ID: mdl-38159116
ABSTRACT
Lignocellulosic material can be converted to valorized products such as fuels. Pretreatment is an essential step in conversion, which is needed to increase the digestibility of the raw material for microbial fermentation. However, pretreatment generates by-products (hydrolysate toxins) that are detrimental to microbial growth. In this study, natural Saccharomyces strains isolated from habitats in Thailand were screened for their tolerance to synthetic hydrolysate toxins (synHTs). The Saccharomyces cerevisiae natural strain BCC39850 (toxin-tolerant) was crossed with the laboratory strain CEN.PK2-1C (toxin-sensitive), and quantitative trait locus (QTL) analysis was performed on the segregants using phenotypic scores of growth (OD600) and glucose consumption. VMS1, DET1, KCS1, MRH1, YOS9, SYO1, and YDR042C were identified from QTLs as candidate genes associated with the tolerance trait. CEN.PK2-1C knockouts of the VMS1, YOS9, KCS1, and MRH1 genes exhibited significantly greater hydrolysate toxin sensitivity to growth, whereas CEN.PK2-1C knock-ins with replacement of VMS1 and MRH1 genes from the BCC39850 alleles showed significant increased ethanol production titers compared with the CEN.PK2-1C parental strain in the presence of synHTs. The discovery of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin tolerance in S. cerevisiae indicates the roles of the endoplasmic-reticulum-associated protein degradation pathway, plasma membrane protein association, and the phosphatidylinositol signaling system in this trait. KEY POINTS • QTL analysis was conducted using a hydrolysate toxin-tolerant S. cerevisiae natural strain • Deletion of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin-sensitivity • Replacement of VMS1 and MRH1 with natural strain alleles increased ethanol production titers in the presence of hydrolysate toxins.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae Idioma: En Ano de publicação: 2024 Tipo de documento: Article