Your browser doesn't support javascript.
loading
Effects of Fe-N co-modified biochar on methanogenesis performance, microbial community, and metabolic pathway during anaerobic co-digestion of alternanthera philoxeroides and cow manure.
Fan, Qiongbo; Shao, Zhijiang; Guo, Xiaohui; Qu, Qiang; Yao, Yiqing; Zhang, Zengqiang; Qiu, Ling.
Afiliação
  • Fan Q; Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712
  • Shao Z; Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712
  • Guo X; Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712
  • Qu Q; Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712
  • Yao Y; Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712
  • Zhang Z; Northwest A&F University, College of Natural Resources and Environment, Yangling, Shaanxi, 712100, China.
  • Qiu L; Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712
J Environ Manage ; 351: 120006, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38176383
ABSTRACT
The performance of anaerobic digestion (AD) is susceptible to disturbances in feedstock degradation, intermediates accumulation, and methanogenic archaea activity. To improve the methanogenesis performance of the AD system, Fe-N co-modified biochar was prepared under different pyrolysis temperatures (300,500, and 700 °C). Meanwhile, pristine and Fe-modified biochar were also derived from alternanthera philoxeroides (AP). The aim was to compare the effects of Fe-N co-modification, Fe modification, and pristine biochar on the methanogenic performance and explicit the responding mechanism of the microbial community in anaerobic co-digestion (coAD) of AP and cow manure (CM). The highest cumulative methane production was obtained with the addition of Fe-N-BC500 (260.38 mL/gVS), which was 42.37 % higher than the control, while the acetic acid, propionic acid, and butyric acid concentration of Fe-N-BC were increased by 147.58 %, 44.25 %, and 194.06 % compared with the control, respectively. The co-modified biochar enhanced the abundance of Chloroflexi and Methanosarcina in the AD system. Metabolic pathway analysis revealed that the increased methane production was related to the formation and metabolism of volatile fatty acids and that Fe-N-BC500 enhanced the biosynthesis of coenzyme A and the cell activity of microorganisms, accelerating the degradation of propionic acid and enhancing the hydrogenotrophic methanogenesis pathway. Overall, Fe-N co-modified biochar was proved to be an effective promoter for accelerated methane production during AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Propionatos / Carvão Vegetal / Microbiota Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Propionatos / Carvão Vegetal / Microbiota Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article