Your browser doesn't support javascript.
loading
CDMO: Chaotic Dwarf Mongoose Optimization Algorithm for feature selection.
Abdelrazek, Mohammed; Abd Elaziz, Mohamed; El-Baz, A H.
Afiliação
  • Abdelrazek M; Department of Mathematics, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
  • Abd Elaziz M; Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
  • El-Baz AH; Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, UAE.
Sci Rep ; 14(1): 701, 2024 Jan 06.
Article em En | MEDLINE | ID: mdl-38184680
ABSTRACT
In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a wrapper-based model which selects optimal features that give higher classification accuracy. To speed up the convergence and increase the effectiveness of DMO, ten chaotic maps were used to modify the key elements of Dwarf Mongoose movement during the optimization process. To evaluate the efficiency of the CDMO, ten different UCI datasets are used and compared against the original DMO and other well-known Meta-heuristic techniques, namely Ant Colony optimization (ACO), Whale optimization algorithm (WOA), Artificial rabbit optimization (ARO), Harris hawk optimization (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale optimizer (RSGW), Salp swarm algorithm based on particle swarm optimization (SSAPSO), Binary genetic algorithm (BGA), Adaptive switching gray-whale optimizer (ASGW) and Particle Swarm optimization (PSO). The experimental results show that the CDMO gives higher performance than the other methods used in feature selection. High value of accuracy (91.9-100%), sensitivity (77.6-100%), precision (91.8-96.08%), specificity (91.6-100%) and F-Score (90-100%) for all ten UCI datasets are obtained. In addition, the proposed method is further assessed against CEC'2022 benchmarks functions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article