Your browser doesn't support javascript.
loading
The novel chaperonin 10 like protein (SbCPN10L) from Salicornia brachiata (Roxb.) augment the heat stress tolerance in transgenic tobacco.
Kumari, Anupam; Sutariya, Jigar A; Rathore, Aditya P; Rathore, Mangal S.
Afiliação
  • Kumari A; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, INDIA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA. Electronic
  • Sutariya JA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA. Electronic address: jigar.sutariya21@gmail.com.
  • Rathore AP; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, INDIA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA. Electronic
  • Rathore MS; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, INDIA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA. Electronic
Gene ; 900: 148139, 2024 Mar 30.
Article em En | MEDLINE | ID: mdl-38185292
ABSTRACT
The heat stress is a significant environmental challenge and impede the plant growth, development and productivity. The characterization and utilization of novel genes for improving stress tolerance represents a paramount approach in crop breeding. In the present study, we report on cloning of a novel heat-induced chaperonin 10-like gene (SbCPN10L) from Salicornia brachiata and elucidation of its in-planta role in conferring the heat stress endurance. The transgenic tobacco over-expressing SbCPN10L gene exhibited enhanced growth attributes such as higher rate of seed germination, germination and vigor index at elevated (35 ± 1 °C) temperature (eT). The SbCPN10L tobacco exhibited greenish and healthy seedling growth under stress. Compared with control tobacco at eT, the transgenic tobacco had higher water contents, membrane stability index, stress tolerance index and photosynthetic pigments. Lower electrolyte leakage and less accumulation of malondialdehyde, hydrogen peroxide and reactive oxygen species indicated better heat stress tolerance in transgenic tobacco over-expressing SbCPN10L gene. Transgenic tobacco accumulated higher contents of sugars, starch, amino acids and polyphenols at eT. The negative solute potential observed in transgenic tobacco contributed to maintain water content and support improved growth under stress. The up-regulation of NtAPX, NtPOX and NtSOD in transgenic tobacco under stress indicated higher ROS scavenging ability and better physiological conditioning. The results recommend the SbCPN10L gene as a potential candidate gene with an ability to confer heat stress tolerance for climate resilient crops.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chaperonina 10 / Chenopodiaceae Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chaperonina 10 / Chenopodiaceae Idioma: En Ano de publicação: 2024 Tipo de documento: Article