Your browser doesn't support javascript.
loading
Host and Microbe Blood Metagenomics Reveals Key Pathways Characterizing Critical Illness Phenotypes.
Neyton, Lucile P A; Sinha, Pratik; Sarma, Aartik; Mick, Eran; Kalantar, Katrina; Chen, Stephanie; Wu, Nelson; Delucchi, Kevin; Zhuo, Hanjing; Bos, Lieuwe D J; Jauregui, Alejandra; Gomez, Antonio; Hendrickson, Carolyn M; Kangelaris, Kirsten N; Leligdowicz, Aleksandra; Liu, Kathleen D; Matthay, Michael A; Langelier, Charles R; Calfee, Carolyn S.
Afiliação
  • Neyton LPA; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine.
  • Sinha P; Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri.
  • Sarma A; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine.
  • Mick E; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine.
  • Kalantar K; Division of Infectious Diseases.
  • Chen S; Chan Zuckerberg Biohub, San Francisco, California.
  • Wu N; Chan Zuckerberg Initiative, Redwood City, California.
  • Delucchi K; Department of Medicine.
  • Zhuo H; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine.
  • Bos LDJ; Department of Psychiatry and Behavioral Sciences.
  • Jauregui A; Department of Anesthesiology, and.
  • Gomez A; Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, the Netherlands.
  • Hendrickson CM; Department of Medicine.
  • Kangelaris KN; Department of Medicine.
  • Leligdowicz A; Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California; and.
  • Liu KD; Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California; and.
  • Matthay MA; Department of Medicine.
  • Langelier CR; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
  • Calfee CS; Department of Anesthesiology, and.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 04 01.
Article em En | MEDLINE | ID: mdl-38190719
ABSTRACT
Rationale Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.

Objectives:

We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).

Methods:

We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main

Results:

The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.

Conclusions:

The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome do Desconforto Respiratório / Sepse Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndrome do Desconforto Respiratório / Sepse Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article