Your browser doesn't support javascript.
loading
Deep embedded clustering generalisability and adaptation for integrating mixed datatypes: two critical care cohorts.
de Kok, Jip W T M; van Rosmalen, Frank; Koeze, Jacqueline; Keus, Frederik; van Kuijk, Sander M J; Castela Forte, José; Schnabel, Ronny M; Driessen, Rob G H; van Herpt, Thijs T W; Sels, Jan-Willem E M; Bergmans, Dennis C J J; Lexis, Chris P H; van Doorn, William P T M; Meex, Steven J R; Xu, Minnan; Borrat, Xavier; Cavill, Rachel; van der Horst, Iwan C C; van Bussel, Bas C T.
Afiliação
  • de Kok JWTM; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands. jip.de.kok@mumc.nl.
  • van Rosmalen F; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands. jip.de.kok@mumc.nl.
  • Koeze J; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands.
  • Keus F; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
  • van Kuijk SMJ; Department of Critical Care, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
  • Castela Forte J; Department of Critical Care, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
  • Schnabel RM; Department of Clinical Epidemiology and Medical Technical Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands.
  • Driessen RGH; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
  • van Herpt TTW; Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands.
  • Sels JEM; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands.
  • Bergmans DCJJ; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands.
  • Lexis CPH; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
  • van Doorn WPTM; Department of Cardiology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
  • Meex SJR; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands.
  • Xu M; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
  • Borrat X; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands.
  • Cavill R; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
  • van der Horst ICC; Department of Cardiology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
  • van Bussel BCT; Department of Intensive Care Medicine, Maastricht University Medical Centre+, P. Debyelaan, 25, 6229 HX, Maastricht, The Netherlands.
Sci Rep ; 14(1): 1045, 2024 01 10.
Article em En | MEDLINE | ID: mdl-38200252
ABSTRACT
We validated a Deep Embedded Clustering (DEC) model and its adaptation for integrating mixed datatypes (in this study, numerical and categorical variables). Deep Embedded Clustering (DEC) is a promising technique capable of managing extensive sets of variables and non-linear relationships. Nevertheless, DEC cannot adequately handle mixed datatypes. Therefore, we adapted DEC by replacing the autoencoder with an X-shaped variational autoencoder (XVAE) and optimising hyperparameters for cluster stability. We call this model "X-DEC". We compared DEC and X-DEC by reproducing a previous study that used DEC to identify clusters in a population of intensive care patients. We assessed internal validity based on cluster stability on the development dataset. Since generalisability of clustering models has insufficiently been validated on external populations, we assessed external validity by investigating cluster generalisability onto an external validation dataset. We concluded that both DEC and X-DEC resulted in clinically recognisable and generalisable clusters, but X-DEC produced much more stable clusters.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cuidados Críticos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cuidados Críticos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article