Your browser doesn't support javascript.
loading
Discovery of antitussive material basis and mechanisms in Citri Sarcodactylis Fructus by coupling UHPLC-Q/Orbitrap HRMS combined spectrum-effect relationship and metabolomics analyses.
Li, Xuemin; Liu, Xin; Gong, Qianqian; Duan, Tingyin; Zhang, Mengjiao; Guo, Dale; Wu, Wenlin; Deng, Fang.
Afiliação
  • Li X; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
  • Liu X; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
  • Gong Q; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
  • Duan T; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
  • Zhang M; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
  • Guo D; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
  • Wu W; Chengdu Institute of Food Inspection, Chengdu 611130, PR China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address: wwl2008802@gmail.com.
  • Deng F; State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China. Electronic address: dengfang@cdutcm.edu.cn.
Article em En | MEDLINE | ID: mdl-38211391
ABSTRACT
Citri Sarcodactylis Fructus (CSF) is widely used as food raw material and traditional Chinese medicine. Fingerprints of different fractions of CSF were established for spectrum-effect relationship analysis, and the main compounds were identified by UHPLC Quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS). The antitussive effect was evaluated using a classical mouse model of cough induced by ammonia water. One-way ANOVA was used to determine differences in efficacy. The potential active compounds were screened by spectrum-effect relationship with grey relational degree analysis (GRA), Pearson bivariate correlation analysis (Pearson's), and partial least squares analysis (PLS) analyses. Differential metabolites associated with cough in serum were screened and identified using orthogonal partial least squares-discriminant analysis, HMDB database, and UHPLC-Q/Orbitrap HRMS. Metabolic pathway analysis was performed using MetaboAnalyst 5.0. Results indicate that 70 % ethanol elution fraction (70 % EF) is the major active fraction, and 8 components were identified to possess antitussive effects. Metabolomic analysis showed that 19 metabolites are potential biomarkers related to cough, and 70 % EF can remarkable restore 13 of them to normal levels (P < 0.05). These biomarkers are mainly involved in glycerophospholipid metabolism and sphingolipid metabolism. This study aims to reveal the main pharmacodynamic active sites and potential active ingredients of CSF's antitussive effect. In addition, metabolomics was used to preliminarily elucidate the in-vivo regulatory mechanism of the antitussive effect of the 70 % EF of CSF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antitussígenos / Medicamentos de Ervas Chinesas Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Antitussígenos / Medicamentos de Ervas Chinesas Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article