Your browser doesn't support javascript.
loading
The effects of different doses of lanthanum-modified bentonite in combination with a submerged macrophyte (Vallisneria denseserrulata) on phosphorus inactivation and macrophyte growth: A mesocosm study.
Zhang, Xiumei; Zhen, Wei; Cui, Suzhen; Wang, Sen; Chen, Weiqi; Zhou, Qiong; Jeppesen, Erik; Liu, Zhengwen.
Afiliação
  • Zhang X; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of
  • Zhen W; Wuhan Changjiang Waterway Rescue and Salvage Bure, 430013, Wuhan, China.
  • Cui S; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
  • Wang S; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of
  • Chen W; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of
  • Zhou Q; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of
  • Jeppesen E; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-6, 8600, Silkeborg, Denmark; Limnology Laboratory, Department of Biological Sciences and Center for Ecosystem Resea
  • Liu Z; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 210008, Nanjing, China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Ecology and
J Environ Manage ; 352: 120053, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38211429
ABSTRACT
The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively control (LMB-free), low dosage (570 g m-2), middle dosage (1140 g m-2), and high dosage (2280 g m-2). The results showed that the combination of LMB dosage and V. denseserrulata reduced TP in the water column by 32%-38% compared to V. denseserrulata alone, while no significant difference was observed among the three LMB treatments. Porewater soluble reactive P, two-dimensional diffusive gradient in thin films (DGT)-labile P concentrations, and P transformation in the 0-1 cm sediment layer exhibited similar trends along the LMB dosage gradient. Besides, LMB inhibited plant growth and reduced the uptake of mineral elements (i.e., calcium, manganese, iron, and magnesium) in a dosage-dependent manner with LMB. LMB may reduce plant growth by creating a P deficiency risk for new ramets and by interfering with the uptake of mineral elements. Considering both the dose effect of LMB on P inactivation and negative effect on macrophyte growth, we suggest a "small dosage, frequent application" method for LMB application to be used in lake restoration aiming to recover submerged macrophytes and clear water conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Poluentes Químicos da Água Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Poluentes Químicos da Água Idioma: En Ano de publicação: 2024 Tipo de documento: Article