Your browser doesn't support javascript.
loading
Finite-Entanglement Scaling of 2D Metals.
Mortier, Quinten; Li, Ming-Hao; Haegeman, Jutho; Bultinck, Nick.
Afiliação
  • Mortier Q; Department of Physics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.
  • Li MH; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Haegeman J; Department of Physics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.
  • Bultinck N; Department of Physics, Ghent University, Krijgslaan 281, 9000 Gent, Belgium.
Phys Rev Lett ; 131(26): 266202, 2023 Dec 29.
Article em En | MEDLINE | ID: mdl-38215387
ABSTRACT
We extend the study of finite-entanglement scaling from one-dimensional gapless models to two-dimensional systems with a Fermi surface. In particular, we show that the entanglement entropy of a contractible spatial region with linear size L scales as S∼Llog[ξf(L/ξ)] in the optimal tensor network, and hence area-law entangled, state approximation to a metallic state, where f(x) is a scaling function which depends on the shape of the Fermi surface and ξ is a finite correlation length induced by the restricted entanglement. Crucially, the scaling regime can be realized with numerically tractable bond dimensions. We also discuss the implications of the Lieb-Schultz-Mattis theorem at fractional filling for tensor network state approximations of metallic states.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article