Your browser doesn't support javascript.
loading
Ultrasound assisted electrodeposition of photocatalytic antibacterial MoS2-Zn coatings controlled by sodium dodecyl sulfate.
Zhai, Xiaofan; Jiang, Ze; Zhang, Yu; Sun, Jiawen; Ju, Peng; Jiang, Quantong; Wang, Youqiang; Duan, Jizhou; Hou, Baorong.
Afiliação
  • Zhai X; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanni
  • Jiang Z; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanni
  • Zhang Y; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Laoshan Laboratory, No. 168 Wenhai Road, Qingdao 266071, China.
  • Sun J; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Laoshan Laboratory, No. 168 Wenhai Road, Qingdao 266071, China.
  • Ju P; Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao 266061, PR China. Electronic address: jupeng@fio.org.cn.
  • Jiang Q; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanni
  • Wang Y; School of Mechanical Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, PR China.
  • Duan J; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanni
  • Hou B; CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, PR China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanni
Ultrason Sonochem ; 102: 106749, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38217907
ABSTRACT
Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non-toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2-Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2-Zn coatings. Besides, the antibacterial performance of the MoS2-Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2-Zn coating showed high and broad-spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2-Zn coatings generated superoxide (·O2-) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2-Zn coatings also showed high antibacterial stability after four "light-dark" cycles. According to the results of the attached bacteria, the MoS2-Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2-Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Galvanoplastia / Molibdênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Galvanoplastia / Molibdênio Idioma: En Ano de publicação: 2024 Tipo de documento: Article