Your browser doesn't support javascript.
loading
Understanding spatial heterogeneity of groundwater arsenic concentrations at a field scale: Taking the Datong Basin as an example to explore the significance of hydrogeological factors.
Chi, Zeyong; Xie, Xianjun; Wang, Yanxin.
Afiliação
  • Chi Z; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China. Electronic address: zeyongchi@163.com.
  • Xie X; State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China. Electronic address: xjxie@cug.edu.cn.
  • Wang Y; State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
J Environ Manage ; 352: 120112, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38244408
ABSTRACT
The spatial heterogeneity of arsenic (As) concentration exceeding the 10 µg/L WHO limit at the field scale poses significant challenges for groundwater utilization, but it remains poorly understood. To address this knowledge gap, the Daying site was selected as a representative case (As concentration ranged from 1.55 to 2237 µg/L within a 250 × 150 m field), and a total of 28 groundwater samples were collected and analyzed for hydrochemistry, As speciation, and stable hydrogen and oxygen isotope. Principal component analysis was employed to identify the primary factors controlling groundwater hydrochemistry. Results indicate that the spatial heterogeneity of groundwater As concentration is primarily attributed to vertical recharge and competitive adsorption. Low vertical recharge introduces reductive substances, such as dissolved organic matter, which enhances the reductive environment and facilitates microbial-induced reduction and mobilization of As. Conversely, areas with high vertical recharge introduce oxidizing agents like SO42- and DO, which act as preferred electron acceptors over Fe(III), thus inhibiting the reductive dissolution of Fe(III) oxides and the mobilization of As. PCA and hydrochemistry jointly indicate that spatial variability of P and its competitive adsorption with As are important factors leading to spatial heterogeneity of groundwater As concentration. However, the impacts of pH, Si, HCO3-, and F- on As adsorption are insignificant. Specifically, low vertical recharge can increase the proportion of As(III) and promote P release through organic matter mineralization. This process further leads to the desorption of As, indicating a synergistic effect between low vertical recharge and competitive adsorption. This field-scale spatial heterogeneity underscores the critical role of hydrogeological conditions. Sites with close hydraulic connections to surface water often exhibit low As concentrations in groundwater. Therefore, when establishing wells in areas with widespread high-As groundwater, selecting sites with open hydrogeological conditions can prove beneficial.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Poluentes Químicos da Água / Água Subterrânea Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Poluentes Químicos da Água / Água Subterrânea Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article