Fatal crashes and rare events logistic regression: an exploratory empirical study.
Front Public Health
; 11: 1294338, 2023.
Article
em En
| MEDLINE
| ID: mdl-38249366
ABSTRACT
Objective:
Fatal road accidents are statistically rare, posing challenges for accurate estimation through the classic logit model (LM). This study seeks to validate the efficacy of a rare events logistic model (RELM) in enhancing the precision of fatal crash estimations.Methods:
Both LM and RELM were employed to examine the relationship between pertinent risk factors and the incidence of fatal crashes. Crash-injury datasets sourced from Hillsborough County, Florida served as the empirical basis for evaluating the performance metrics of both LM and RELM.Results:
The analysis revealed that RELM yielded more accurate predictions of fatal crashes compared to LM. Receiver operating characteristic (ROC) curves were constructed, and the area under the curve (AUC) for each model was computed to offer a comparative performance assessment. The empirical evidence notably favored RELM over LM as substantiated by superior AUC values.Conclusion:
The study offers empirical validation that RELM is demonstrably more proficient in predicting fatal crashes than the LM, thereby recommending its application for nuanced traffic safety analytics.Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Acidentes de Trânsito
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
País/Região como assunto:
America do norte
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article