Your browser doesn't support javascript.
loading
6-Shogaol Ameliorates Liver Inflammation and Fibrosis in Mice on a Methionine- and Choline-Deficient Diet by Inhibiting Oxidative Stress, Cell Death, and Endoplasmic Reticulum Stress.
Yang, Ah Young; Kim, Kiryeong; Kwon, Hyun Hee; Leem, Jaechan; Song, Jeong Eun.
Afiliação
  • Yang AY; Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
  • Kim K; Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
  • Kwon HH; Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
  • Leem J; Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
  • Song JE; Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.
Molecules ; 29(2)2024 Jan 15.
Article em En | MEDLINE | ID: mdl-38257332
ABSTRACT
Non-alcoholic steatohepatitis (NASH) is becoming an increasingly serious global health threat, distinguished by hepatic lipid accumulation, inflammation, and fibrosis. There is a lack of approved pharmaceutical interventions for this disease, highlighting the urgent need for effective treatment. This study explores the hepatoprotective potential of 6-shogaol, a natural compound derived from ginger, in a methionine- and choline-deficient (MCD) dietary mouse model of NASH. Male C57BL/6J mice were subjected to the MCD diet for 4 weeks to induce NASH, with concurrent intraperitoneal administration of 6-shogaol (20 mg/kg) three times a week. While 6-shogaol did not impact body weight, liver weight, or hepatic lipid accumulation, it effectively mitigated liver injury, inflammation, and fibrosis in MCD diet-fed mice. Mechanistically, 6-shogaol inhibited lipid and DNA oxidation, restored hepatic glutathione levels, and regulated the expression of pro-oxidant and antioxidant enzymes. Furthermore, 6-shogaol inhibited apoptosis and necroptosis, as indicated by a decrease in TUNEL-stained cells and downregulation of apoptosis- and necroptosis-associated proteins. Additionally, 6-shogaol alleviated endoplasmic reticulum (ER) stress, as demonstrated by decreased expression of molecules associated with unfolded protein response pathways. These findings underscore the potential of 6-shogaol as a therapeutic intervention for NASH by targeting pathways related to oxidative stress, cell death, and ER stress.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Catecóis / Hepatopatia Gordurosa não Alcoólica / Hepatite Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Catecóis / Hepatopatia Gordurosa não Alcoólica / Hepatite Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article