Your browser doesn't support javascript.
loading
Interactions of particulate- and dissolved-phase heavy metals in a mature stormwater bioretention cell.
Croft, Kristen; Kjellerup, Birthe V; Davis, Allen P.
Afiliação
  • Croft K; Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
  • Kjellerup BV; Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
  • Davis AP; Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA. Electronic address: apdavis@umd.edu.
J Environ Manage ; 352: 120014, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38262285
ABSTRACT
Bioretention is an increasingly common stormwater control measure (SCM) for mitigation of stormwater quantity and quality. Studies from lab to field scale have shown successful removal of total metals from stormwater, especially Cu and Zn which are ubiquitous in the urban environment yet detrimental to aquatic ecosystems. While bioretention effectively removes particulate matter and particulate bound (PB) contaminants, removal performance of dissolved metals has been neglected in field studies. After approximately two decades of these systems being implemented, with a typical design-life of 20 years, performance of mature systems is unknown. This study examined the performance of a 16- to 18-year-old bioretention cell by characterizing Cu and Zn partitioning and removal. Flow-weighted composite samples of stormwater and bioretention effluent were collected and analyzed for total and dissolved metals. Size-fractioned road-deposited sediments (RDS) were collected and analyzed for metals and particle size distribution. The comparison of RDS and PB metals showed that PB-Zn was enriched in stormwater, indicating higher mobility of PB-Zn compared to PB-Cu. The mature bioretention system effectively removed particulates and PB-metals with average load reductions of 82% and 83%, respectively. While concentrations for dissolved metals were low (<40 µg/L), no significant difference between influent and effluent was observed. Effluent concentrations of total and dissolved Cu, total organic carbon, and particulates were not significantly different from those measured over 10 years ago at the site, while total Zn effluent concentration slightly increased. MINTEQ speciation modeling showed that Cu was approximately 100% bound with dissolved organic matter (DOM) in all bioretention effluent. While Zn was also mostly bound with DOM in effluent, some events showed free ionic Zn reaching concentrations in the same order of magnitude. Media amendments, maintenance, and monitoring of SCMs should be considered where further removal of dissolved metals is necessary for the protection of aquatic environments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Metais Pesados Idioma: En Ano de publicação: 2024 Tipo de documento: Article