Your browser doesn't support javascript.
loading
Scientific Deep Machine Learning Concepts for the Prediction of Concentration Profiles and Chemical Reaction Kinetics: Consideration of Reaction Conditions.
Adebar, Niklas; Keupp, Julian; Emenike, Victor N; Kühlborn, Jonas; Vom Dahl, Lisa; Möckel, Robert; Smiatek, Jens.
Afiliação
  • Adebar N; Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany.
  • Keupp J; Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany.
  • Emenike VN; HP BioP Launch and Innovation, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany.
  • Kühlborn J; Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany.
  • Vom Dahl L; Development NCE, Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany.
  • Möckel R; Development NCE, Chemical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, D-55218 Ingelheim (Rhein), Germany.
  • Smiatek J; Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
J Phys Chem A ; 128(5): 929-944, 2024 Feb 08.
Article em En | MEDLINE | ID: mdl-38271617
ABSTRACT
Emerging concepts from scientific deep machine learning such as physics-informed neural networks (PINNs) enable a data-driven approach for the study of complex kinetic problems. We present an extended framework that combines the advantages of PINNs with the detailed consideration of experimental parameter variations for the simulation and prediction of chemical reaction kinetics. The approach is based on truncated Taylor series expansions for the underlying fundamental equations, whereby the external variations can be interpreted as perturbations of the kinetic parameters. Accordingly, our method allows for an efficient consideration of experimental parameter settings and their influence on the concentration profiles and reaction kinetics. A particular advantage of our approach, in addition to the consideration of univariate and multivariate parameter variations, is the robust model-based exploration of the parameter space to determine optimal reaction conditions in combination with advanced reaction insights. The benefits of this concept are demonstrated for higher-order chemical reactions including catalytic and oscillatory systems in combination with small amounts of training data. All predicted values show a high level of accuracy, demonstrating the broad applicability and flexibility of our approach.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article