Your browser doesn't support javascript.
loading
A mussel inspired polyvinyl alcohol/collagen/tannic acid bioadhesive for wet adhesion and hemostasis.
Liu, Ying; Zhao, Chenyu; Song, Changtong; Shen, Xiao; Wang, Fengji; Zhang, Yisong; Ma, Yuhong; Ding, Xuejia.
Afiliação
  • Liu Y; Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
  • Zhao C; National Institutes for Food and Drug Control, Beijing 102629 China.
  • Song C; Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
  • Shen X; Center of Stomatology, China-Japan Friendship Hospital, Beijing 100029, China.
  • Wang F; Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
  • Zhang Y; Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
  • Ma Y; Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address: mayh@mail.buct.
  • Ding X; Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address: dingxj@mail.buc
Colloids Surf B Biointerfaces ; 235: 113766, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38278032
ABSTRACT
Bioadhesives are useful in surgery for hemostasis, tissue sealing and wound healing. However, most bioadhesives have limitations such as weak adhesion in wet conditions, insufficient sealing and poor clotting performance. Inspired by the adhesion mechanism of marine mussels, a novel bioadhesive (PCT) was developed by simply combining polyvinyl alcohol (PVA), collagen (COL) and tannic acid (TA) together. The results showed that the adhesion, sealing and blood coagulation properties boosted with the increase of tannic acid content in PCT. The wet shear adhesion strength of PCT-5 (the weight ratio of PVACOLTA=115) was 60.8 ± 0.6 kPa, the burst pressure was 213.7 ± 0.7 mmHg, and the blood clotting index was 39.3% ± 0.6%, respectively. In rat heart hemostasis tests, PCT-5 stopped bleeding in 23.7 ± 3.2 s and reduced bleeding loss to 83.0 ± 19.1 mg, which outperformed the benchmarks of commercial gauze (53.3 ± 8.7 s and 483.0 ± 15.0 mg) and 3 M adhesive (Type No.1469SB, 35.3 ± 5.0 s and 264.0 ± 14.2 mg). The as-prepared bioadhesive could provide significant benefits for tissue sealing and hemorrhage control along its low cost and facile preparation process.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Álcool de Polivinil / Colágeno / Polifenóis Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Álcool de Polivinil / Colágeno / Polifenóis Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article