Your browser doesn't support javascript.
loading
Novel method for rapid monitoring of OPFRs by LLE and GC-MS as a tool for assessing biodegradation: validation and applicability.
Losantos, Diana; Palacios, Oscar; Berge, María Jesús; Sarrà, Montserrat; Caminal, Gloria; Eustaquio, Alba.
Afiliação
  • Losantos D; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, Campus Bellaterra, 08193, Cerdanyola del Vallès, Spain.
  • Palacios O; Servei d'Anàlisi Química, Universitat Autònoma de Barcelona, Facultat de Ciències, Campus Bellaterra, 08193, Cerdanyola del Vallès, Spain.
  • Berge MJ; Servei d'Anàlisi Química, Universitat Autònoma de Barcelona, Facultat de Ciències, Campus Bellaterra, 08193, Cerdanyola del Vallès, Spain.
  • Sarrà M; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, Campus Bellaterra, 08193, Cerdanyola del Vallès, Spain. montserrat.sarra@uab.cat.
  • Caminal G; Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
  • Eustaquio A; Servei d'Anàlisi Química, Universitat Autònoma de Barcelona, Facultat de Ciències, Campus Bellaterra, 08193, Cerdanyola del Vallès, Spain.
Anal Bioanal Chem ; 416(6): 1493-1504, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38280016
ABSTRACT
Organophosphate flame retardants (OPFRs) are high-production volume chemicals widely present in environmental compartments. The presence of water-soluble OPFRs (tri-n-butyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP), and triethyl phosphate (TEP)) in water compartments evidences the struggle of conventional wastewater treatment plants (WWTPs) to effectively eliminate these toxic compounds. This study reports for the first time the use of white-rot fungi as a promising alternative for the removal of these OPFRs. To accomplish this, a simple and cost-efficient quantification method for rapid monitoring of these contaminants' concentrations by GC-MS while accounting for matrix effects was developed. The method proved to be valid and reliable for all the tested parameters. Sample stability was examined under various storage conditions, showing the original samples to be stable after 60 days of freezing, while post-extraction storage techniques were also effective. Finally, a screening of fungal degraders while assessing the influence of the glucose regime on OPFR removal was performed. Longer chain organophosphate flame retardants, TBP and TBEP, could be easily and completely removed by the fungus Ganoderma lucidum after only 4 days. This fungus also stood out as the sole organism capable of partially degrading TCEP (35% removal). The other chlorinated compound, TCPP, was more easily degraded and 70% of its main isomer was removed by T. versicolor. However, chlorinated compounds were only partially degraded under nutrient-limiting conditions. TEP was either not degraded or poorly degraded, and it is likely that it is a transformation product from another OPFR's degradation. These results suggest that degradation of chlorinated compounds is dependent on the concentration of the main carbon source and that more polar OPFRs are less susceptible to degradation, given that they are less accessible to radical removal by fungi. Overall, the findings of the present study pave the way for further planned research and a potential application for the degradation of these contaminants in real wastewaters.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Organofosforados / Fosfinas / Retardadores de Chama Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Organofosforados / Fosfinas / Retardadores de Chama Idioma: En Ano de publicação: 2024 Tipo de documento: Article