Your browser doesn't support javascript.
loading
Global validation of data-assimilative electron ring current nowcast for space weather applications.
Haas, Bernhard; Shprits, Yuri Y; Wutzig, Michael; Szabó-Roberts, Mátyás; García Peñaranda, Marina; Castillo Tibocha, Angelica M; Himmelsbach, Julia; Wang, Dedong; Miyoshi, Yoshizumi; Kasahara, Satoshi; Keika, Kunihiro; Yokota, Shoichiro; Shinohara, Iku; Hori, Tomo.
Afiliação
  • Haas B; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany. bhaas@gfz-potsdam.de.
  • Shprits YY; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany. bhaas@gfz-potsdam.de.
  • Wutzig M; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Szabó-Roberts M; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
  • García Peñaranda M; Department of the Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA.
  • Castillo Tibocha AM; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Himmelsbach J; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Wang D; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Miyoshi Y; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
  • Kasahara S; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Keika K; Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
  • Yokota S; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Shinohara I; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany.
  • Hori T; ISEE, Nagoya University, Nagoya, Japan.
Sci Rep ; 14(1): 2327, 2024 Jan 28.
Article em En | MEDLINE | ID: mdl-38282034
ABSTRACT
The hazardous plasma environment surrounding Earth poses risks to satellites due to internal charging and surface charging effects. Accurate predictions of these risks are crucial for minimizing damage and preparing for system failures of satellites. To forecast the plasma environment, it is essential to know the current state of the system, as the accuracy of the forecast depends on the accuracy of the initial condition of the forecast. In this study, we use data assimilation techniques to combine observational data and model predictions, and present the first global validation of a data-assimilative electron ring current nowcast during a geomagnetic storm. By assimilating measurements from one satellite and validating the results against another satellite in a different magnetic local time sector, we assess the global response and effectiveness of the data assimilation technique for space weather applications. Using this method, we found that the simulation accuracy can be drastically improved at times when observations are available while eliminating almost all of the bias previously present in the model. These findings contribute to the construction of improved operational models in estimating surface charging risks and providing realistic 'source' populations for radiation belt simulations.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article