Your browser doesn't support javascript.
loading
Conformational activation and inhibition of von Willebrand factor by targeting its autoinhibitory module.
Arce, Nicholas A; Markham-Lee, Zoe; Liang, Qian; Najmudin, Shabir; Legan, Emily R; Dean, Gabrielle; Su, Ally J; Wilson, Moriah S; Sidonio, Robert F; Lollar, Pete; Emsley, Jonas; Li, Renhao.
Afiliação
  • Arce NA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Markham-Lee Z; Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
  • Liang Q; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Najmudin S; Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  • Legan ER; Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
  • Dean G; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Su AJ; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Wilson MS; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Sidonio RF; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Lollar P; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Emsley J; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
  • Li R; Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
Blood ; 143(19): 1992-2004, 2024 May 09.
Article em En | MEDLINE | ID: mdl-38290109
ABSTRACT
ABSTRACT Activation of von Willebrand factor (VWF) is a tightly controlled process governed primarily by local elements around its A1 domain. Recent studies suggest that the O-glycosylated sequences flanking the A1 domain constitute a discontinuous and force-sensitive autoinhibitory module (AIM), although its extent and conformation remains controversial. Here, we used a targeted screening strategy to identify 2 groups of nanobodies. One group, represented by clone 6D12, is conformation insensitive and binds the N-terminal AIM (NAIM) sequence that is distal from A1; 6D12 activates human VWF and induces aggregation of platelet-rich plasma at submicromolar concentrations. The other group, represented by clones Nd4 and Nd6, is conformation sensitive and targets the C-terminal AIM (CAIM). Nd4 and Nd6 inhibit ristocetin-induced platelet aggregation and reduce VWF-mediated platelet adhesion under flow. A crystal structure of Nd6 in complex with AIM-A1 shows a novel conformation of both CAIM and NAIM that are primed to interact, providing a model of steric hindrance stabilized by the AIM as the mechanism for regulating GPIbα binding to VWF. Hydrogen-deuterium exchange mass spectrometry analysis shows that binding of 6D12 induces the exposure of the GPIbα-binding site in the A1 domain, but binding of inhibitory nanobodies reduces it. Overall, these results suggest that the distal portion of NAIM is involved in specific interactions with CAIM, and binding of nanobodies to the AIM could either disrupt its conformation to activate VWF or stabilize its conformation to upkeep VWF autoinhibition. These reported nanobodies could facilitate future studies of VWF functions and related pathologies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de von Willebrand / Anticorpos de Domínio Único Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de von Willebrand / Anticorpos de Domínio Único Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article