StructuralDPPIV: a novel deep learning model based on atom structure for predicting dipeptidyl peptidase-IV inhibitory peptides.
Bioinformatics
; 40(2)2024 02 01.
Article
em En
| MEDLINE
| ID: mdl-38305458
ABSTRACT
MOTIVATION Diabetes is a chronic metabolic disorder that has been a major cause of blindness, kidney failure, heart attacks, stroke, and lower limb amputation across the world. To alleviate the impact of diabetes, researchers have developed the next generation of anti-diabetic drugs, known as dipeptidyl peptidase IV inhibitory peptides (DPP-IV-IPs). However, the discovery of these promising drugs has been restricted due to the lack of effective peptide-mining tools. RESULTS:
Here, we presented StructuralDPPIV, a deep learning model designed for DPP-IV-IP identification, which takes advantage of both molecular graph features in amino acid and sequence information. Experimental results on the independent test dataset and two wet experiment datasets show that our model outperforms the other state-of-art methods. Moreover, to better study what StructuralDPPIV learns, we used CAM technology and perturbation experiment to analyze our model, which yielded interpretable insights into the reasoning behind prediction results. AVAILABILITY AND IMPLEMENTATION The project code is available at https//github.com/WeiLab-BioChem/Structural-DPP-IV.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Diabetes Mellitus
/
Aprendizado Profundo
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article