Your browser doesn't support javascript.
loading
Construction of dense film inside capillary wall and SERS application research.
Wei, Shengnan; Du, Wei; Hao, Zongshuo; Li, Na; Li, Yue; Wang, Mingli.
Afiliação
  • Wei S; State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Du W; State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Hao Z; State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Li N; State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Li Y; State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
  • Wang M; State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China. Electronic address: wml@ysu.edu.cn.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123967, 2024 Apr 05.
Article em En | MEDLINE | ID: mdl-38309008
ABSTRACT
The high-density particle distribution in capillary was a crucial factor for enhancing SERS properties and a difficult point in the preparation process. The direct high-temperature method was used to fuse the particles and form a uniform and dense particle distribution on the capillary's inner wall, providing a foundation for enhancing Raman signals. The prepared capillary SERS substrate strongly enhances the rhodamine 6G (R6G) signal, and the RSD values of several characteristic peaks of R6G are about 10 %, demonstrating high sensitivity, uniformity, and stability. Using capillary SERS substrate for detecting goat serum. Embedding precious metal particles into capillary SERS substrate can effectively encapsulate the tested liquid and avoid contamination, which improves the disadvantage of traditional substrates exposing the liquid to air. The prepared capillary SERS substrate could be used for field and biomedical sensitivity detection, providing a theoretical and experimental basis for developing the capillary SERS substrate.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article