Your browser doesn't support javascript.
loading
Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein.
Volaric, Jana; van der Heide, Nieck J; Mutter, Natalie L; Samplonius, Douwe F; Helfrich, Wijnand; Maglia, Giovanni; Szymanski, Wiktor; Feringa, Ben L.
Afiliação
  • Volaric J; Stratingh Institute for Organic Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands.
  • van der Heide NJ; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
  • Mutter NL; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
  • Samplonius DF; Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
  • Helfrich W; Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
  • Maglia G; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
  • Szymanski W; Stratingh Institute for Organic Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands.
  • Feringa BL; Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.
ACS Chem Biol ; 19(2): 451-461, 2024 02 16.
Article em En | MEDLINE | ID: mdl-38318850
ABSTRACT
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Azo / Luz Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Azo / Luz Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article