Your browser doesn't support javascript.
loading
Targeted delivery of polo-like kinase 1 siRNA nanoparticles using an EGFR-PEG bispecific antibody inhibits proliferation of high-risk neuroblastoma.
Logan, Amy; Howard, Christopher B; Huda, Pie; Kimpton, Kathleen; Ma, Zerong; Thurecht, Kristofer J; McCarroll, Joshua A; Moles, Ernest; Kavallaris, Maria.
Afiliação
  • Logan A; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA
  • Howard CB; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLsD, 4072, Australia.
  • Huda P; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLsD, 4072, Australia.
  • Kimpton K; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia.
  • Ma Z; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA
  • Thurecht KJ; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLsD, 4072, Australia; Centre for Advanced Imaging, ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, St Lucia, QLD 4072, Australia.
  • McCarroll JA; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA
  • Moles E; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA
  • Kavallaris M; Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia; UNSW Australian Centre for Nanomedicine, Faculty of Engineering, UNSW, Sydney, NSW 2052, Australia; School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; UNSW RNA
J Control Release ; 367: 806-820, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38341177
ABSTRACT
High-risk neuroblastoma has poor survival due to treatment failure and off-target side effects of therapy. Small molecule inhibitors have shown therapeutic efficacy at targeting oncogenic cell cycle dysregulators, such as polo-like kinase 1 (PLK1). However, their clinical success is limited by a lack of efficacy and specificity, causing off-target toxicity. Herein, we investigate a new treatment strategy whereby a bispecific antibody (BsAb) with dual recognition of methoxy polyethylene glycol (PEG) and a neuroblastoma cell-surface receptor, epidermal growth factor receptor (EGFR), is combined with a PEGylated small interfering RNA (siRNA) lipid nanoparticle, forming BsAb-nanoparticle RNA-interference complexes for targeted PLK1 inhibition against high-risk neuroblastoma. Therapeutic efficacy of this strategy was explored in neuroblastoma cell lines and a tumor xenograft model. Using ionizable lipid-based nanoparticles as a low-toxicity and clinically safe approach for siRNA delivery, we identified that their complexing with EGFR-PEG BsAb resulted in increases in cell targeting (1.2 to >4.5-fold) and PLK1 gene silencing (>2-fold) against EGFR+ high-risk neuroblastoma cells, and enhancements correlated with EGFR expression on the cells (r > 0.94). Through formulating nanoparticles with PEG-lipids ranging in diffusivity, we further identified a highly diffusible PEG-lipid which provided the most pronounced neuroblastoma cell binding, PLK1 silencing, and significantly reduced cancer growth in vitro in high-risk neuroblastoma cell cultures and in vivo in a tumor-xenograft mouse model of the disease. Together, this work provides an insight on the role of PEG-lipid diffusivity and EGFR targeting as potentially relevant variables influencing the therapeutic efficacy of siRNA nanoparticles in high-risk neuroblastoma.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neuroblastoma Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neuroblastoma Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article