Your browser doesn't support javascript.
loading
Hitchhiking of Cas9 with nucleus-localized proteins impairs its controllability and leads to efficient genome editing of NLS-free Cas9.
Zhang, Wenfeng; Wang, Haozheng; Luo, Zhongtao; Jian, Yingzhen; Gong, Chenyu; Wang, Hui; Lin, Xinjian; Liu, Meilin; Wang, Yangmin; Shao, Hongwei.
Afiliação
  • Zhang W; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China. Electronic address: zhangwenfeng@gdpu.edu.cn.
  • Wang H; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Luo Z; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Jian Y; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Gong C; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Wang H; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Lin X; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Liu M; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Wang Y; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China.
  • Shao H; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, P.R. China; Biopharmaceutical Institute, Guangdong Pharmaceutical University, Guangzhou, P.R. China. Electronic address: shaohongwei@gdpu.edu.cn.
Mol Ther ; 32(4): 920-934, 2024 Apr 03.
Article em En | MEDLINE | ID: mdl-38341611
ABSTRACT
CRISPR-Cas9 is the most commonly used genome-editing tool in eukaryotic cells. To modulate Cas9 entry into the nucleus to enable control of genome editing, we constructed a light-controlled CRISPR-Cas9 system to control exposure of the Cas9 protein nuclear localization signal (NLS). Although blue-light irradiation was found to effectively control the entry of Cas9 protein into the nucleus with confocal microscopy observation, effective gene editing occurred in controls with next-generation sequencing analysis. To further clarify this phenomenon, a CRISPR-Cas9 editing system without the NLS and a CRISPR-Cas9 editing system containing a nuclear export signal were also constructed. Interestingly, both Cas9 proteins could achieve effective editing of target sites with significantly reduced off-target effects. Thus, we speculated that other factors might mediate Cas9 entry into the nucleus. However, NLS-free Cas9 was found to produce effective target gene editing even following inhibition of cell mitosis to prevent nuclear import caused by nuclear membrane disassembly. Furthermore, multiple nucleus-localized proteins were found to interact with Cas9, which could mediate the "hitchhiking" of NLS-free Cas9 into the nucleus. These findings will inform future attempts to construct controllable gene-editing systems and provide new insights into the evolution of the nucleus and compatible protein functions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas CRISPR-Cas / Edição de Genes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas CRISPR-Cas / Edição de Genes Idioma: En Ano de publicação: 2024 Tipo de documento: Article