Your browser doesn't support javascript.
loading
Ketogenic diet ameliorates high-fat diet-induced insulin resistance in mouse skeletal muscle by alleviating endoplasmic reticulum stress.
Ma, Qin; Jiang, Lincheng; You, Yuehua; Ni, Hongbing; Ma, Li; Lin, Xiaojing; Wang, Zhuyun; Yan, Weiyan; Xiao, Xiaoqiu; Li, Xinyu; Li, Jibin.
Afiliação
  • Ma Q; Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Jiang L; Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • You Y; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Ni H; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Ma L; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Lin X; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Wang Z; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Yan W; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Xiao X; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
  • Li X; Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. Electronic address: ariel_lee1983@icloud.com.
  • Li J; Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, China. Electronic address: 100091@cqmu.edu.cn.
Biochem Biophys Res Commun ; 702: 149559, 2024 04 02.
Article em En | MEDLINE | ID: mdl-38341923
ABSTRACT

OBJECTIVE:

Ketogenic diets (KD) have been shown to alleviate insulin resistance (IR) by exerting anti-lipogenic and insulin sensitizing effects in the liver through a variety of pathways. The present study sought to investigate whether a ketogenic diet also improves insulin sensitization in skeletal muscle cells through alleviating endoplasmic reticulum stress.

METHODS:

High-fat diet-induced IR mice were allowed to a 2-week ketogenic diet. Insulin resistance and glucose tolerance were evaluated through GTT, ITT, and HOMA-IR. The C2C12 myoblasts exposed to palmitic acid were used to evaluate the insulin sensitization effects of ß-hydroxybutyric acid (ß-OHB). Molecular mechanisms concerning ER stress signaling activation and glucose uptake were assessed.

RESULTS:

The AKT/GSK3ß pathway was inhibited, ER stress signaling associated with IRE1, PERK, and BIP was activated, and the number of Glut4 proteins translocated to membrane decreased in the muscle of HFD mice. However, all these changes were reversed after 2 weeks of feeding on a ketogenic diet. Consistently in C2C12 myoblasts, the AKT/GSK3ß pathway was inhibited by palmitic acid (PA) treatment. The endoplasmic reticulum stress-related proteins, IRE1, and BIP were increased, and the number of Glut4 proteins on the cell membrane decreased. However, ß-OHB treatment alleviated ER stress and improved the glucose uptake of C2C12 cells.

CONCLUSION:

Our data reveal that KD ameliorated HFD-induced insulin resistance in skeletal muscle, which was partially mediated by inhibiting endoplasmic reticulum stress. The insulin sensitization effect of ß-OHB is associated with up regulation of AKT/GSK3ß pathway and the increase in the number of Glut4 proteins on the cell membrane.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Dieta Cetogênica Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Insulina / Dieta Cetogênica Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article