Your browser doesn't support javascript.
loading
Dexamethasone upregulates macrophage PIEZO1 via SGK1, suppressing inflammation and increasing ROS and apoptosis.
Liu, Hailin; Zhou, Lian; Wang, Xifeng; Zheng, Qingcui; Zhan, Fenfang; Zhou, Lanqian; Dong, Yao; Xiong, Yanhong; Yi, Pengcheng; Xu, Guohai; Hua, Fuzhou.
Afiliação
  • Liu H; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Zhou L; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New District Hospital, The first Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Ch
  • Wang X; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, The first Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
  • Zheng Q; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Zhan F; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Zhou L; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Dong Y; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Xiong Y; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Yi P; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Labor
  • Xu G; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address: xuguoh
  • Hua F; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address: ndefy1
Biochem Pharmacol ; 222: 116050, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38354960
ABSTRACT
The side effects of high-dose dexamethasone in anti-infection include increased ROS production and immune cell apoptosis. Dexamethasone effectively activates serum/glucocorticoid-regulated kinase 1 (SGK1), which upregulates various ion channels by activating store-operated calcium entry (SOCE), leading to Ca2+ oscillations. PIEZO1 plays a crucial role in macrophages' immune activity and function, but whether dexamethasone can regulate PIEZO1 by enhancing SOCE via SGK1 activation remains unclear. The effects of dexamethasone were assessed in a mouse model of sepsis, and primary BMDMs and the RAW264.7 were treated with overexpression plasmids, siRNAs, or specific activators or inhibitors to examine the relationships between SGK1, SOCE, and PIEZO1. The functional and phenotypic changes of mouse and macrophage models were detected. The results indicate that high-dose dexamethasone upregulated SGK1 by activating the macrophage glucocorticoid receptor, which enhanced SOCE and subsequently activated PIEZO1. Activation of PIEZO1 resulted in Ca2+ influx and cytoskeletal remodelling. The increase in intracellular Ca2+ mediated by PIEZO1 further increased the activation of SGK1 and ORAI1/STIM1, leading to intracellular Ca2+ peaks. In the context of inflammation, activation of PIEZO1 suppressed the activation of TLR4/NFκB p65 in macrophages. In RAW264.7 cells, PIEZO1 continuous activation inhibited the change in mitochondrial membrane potential, accelerated ROS accumulation, and induced autophagic damage and cell apoptosis in the late stage. CaMK2α was identified as a downstream mediator of TLR4 and PIEZO1, facilitating high-dose dexamethasone-induced macrophage immunosuppression and apoptosis. PIEZO1 is a new glucocorticoid target to regulate macrophage function and activity. This study provides a theoretical basis for the rational use of dexamethasone.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Glucocorticoides Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Glucocorticoides Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article