Your browser doesn't support javascript.
loading
Influence of pump laser fluence on ultrafast myoglobin structural dynamics.
Barends, Thomas R M; Gorel, Alexander; Bhattacharyya, Swarnendu; Schirò, Giorgio; Bacellar, Camila; Cirelli, Claudio; Colletier, Jacques-Philippe; Foucar, Lutz; Grünbein, Marie Luise; Hartmann, Elisabeth; Hilpert, Mario; Holton, James M; Johnson, Philip J M; Kloos, Marco; Knopp, Gregor; Marekha, Bogdan; Nass, Karol; Nass Kovacs, Gabriela; Ozerov, Dmitry; Stricker, Miriam; Weik, Martin; Doak, R Bruce; Shoeman, Robert L; Milne, Christopher J; Huix-Rotllant, Miquel; Cammarata, Marco; Schlichting, Ilme.
Afiliação
  • Barends TRM; Max Planck Institute for Medical Research, Heidelberg, Germany. Thomas.Barends@mpimf-heidelberg.mpg.de.
  • Gorel A; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Bhattacharyya S; Institut de Chimie Radicalaire, CNRS, Aix Marseille Univ, Marseille, France.
  • Schirò G; Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
  • Bacellar C; Paul Scherrer Institute, Villigen, Switzerland.
  • Cirelli C; Paul Scherrer Institute, Villigen, Switzerland.
  • Colletier JP; Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
  • Foucar L; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Grünbein ML; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Hartmann E; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Hilpert M; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Holton JM; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Johnson PJM; Paul Scherrer Institute, Villigen, Switzerland.
  • Kloos M; European XFEL GmbH, Schenefeld, Germany.
  • Knopp G; Paul Scherrer Institute, Villigen, Switzerland.
  • Marekha B; ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon, France.
  • Nass K; Paul Scherrer Institute, Villigen, Switzerland.
  • Nass Kovacs G; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Ozerov D; Paul Scherrer Institute, Villigen, Switzerland.
  • Stricker M; Department of Statistics, University of Oxford, Oxford, UK.
  • Weik M; Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
  • Doak RB; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Shoeman RL; Max Planck Institute for Medical Research, Heidelberg, Germany.
  • Milne CJ; Paul Scherrer Institute, Villigen, Switzerland.
  • Huix-Rotllant M; Institut de Chimie Radicalaire, CNRS, Aix Marseille Univ, Marseille, France. miquel.huixrotllant@univ-amu.fr.
  • Cammarata M; ESRF, Grenoble, France.
  • Schlichting I; Max Planck Institute for Medical Research, Heidelberg, Germany. ilme.schlichting@mpimf-heidelberg.mpg.de.
Nature ; 626(8000): 905-911, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38355794
ABSTRACT
High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artefatos / Lasers / Mioglobina Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artefatos / Lasers / Mioglobina Idioma: En Ano de publicação: 2024 Tipo de documento: Article