Your browser doesn't support javascript.
loading
Study on therapeutic mechanism of total salvianolic acids against myocardial ischemia-reperfusion injury based on network pharmacology, molecular docking, and experimental study.
Hu, Shuang; Wen, Jing; Fan, Xiao-di; Li, Peng.
Afiliação
  • Hu S; Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Grad
  • Wen J; Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Grad
  • Fan XD; Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China. Elec
  • Li P; Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China. Elec
J Ethnopharmacol ; 326: 117902, 2024 May 23.
Article em En | MEDLINE | ID: mdl-38360382
ABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae, also known as Danshen in Chinese, effectively activates the blood and resolves stasis. Total salvianolic acids (SA) is the main active ingredient of Danshen, and related preparations, such as salvianolate injection are commonly used clinically to treat myocardial ischemia-reperfusion injury (MIRI). However, the potential targets and key active ingredients of SA have not been sufficiently investigated. AIM OF THE STUDY This study aimed to investigate the mechanism of action of SA in treating MIRI. MATERIALS AND

METHODS:

Network pharmacology and molecular docking techniques were used to predict SA targets against MIRI. The key acting pathway of SA were validated by performing experiments in a rat MIRI model.

RESULTS:

Twenty potential ingredients and 54 targets of SA in treating MIRI were identified. Ingredient-target-pathway network analysis revealed that salvianolic acid B and rosmarinic acid had the highest degree value. Pathway enrichment analysis showed that SA may regulate MIRI through the IL-17 signaling pathway, and this result was confirmed in the rat MIRI experiment.

CONCLUSION:

The results of this study indicate that SA may protect MIRI by regulating the IL-17 pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Interleucina-17 Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Interleucina-17 Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article