Your browser doesn't support javascript.
loading
Photochromic Perovskite Nanocrystals for Ultraviolet Dosimetry.
Chen, Jie; Sun, Ruifen; Zheng, Jingcheng; Zhang, Weiwei; Huang, Yun; Shao, Jiwei; Chi, Yuwu.
Afiliação
  • Chen J; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
  • Sun R; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
  • Zheng J; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
  • Zhang W; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
  • Huang Y; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
  • Shao J; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
  • Chi Y; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
Small ; 20(29): e2311993, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38363065
ABSTRACT
Excessive ultraviolet (UV) radiation has serious damage to human's health, therefore the development of visible, portable, and wearable sensor for monitoring UV radiation, especially the cumulative UV dosage, is highly desired but full of challenges. Herein, a wearable and flexible UV dosimeter based on photochromic perovskite nanocrystals (PNCs) is designed. The obtained CsPbCl3 PNCs dispersed in dibromomethane (PNCs-DBM) undergo continuous, vivid, and multiple (from very weak purple to blue, cyan, and finally strong green) color change in response to UV radiation. It is demonstrated that the UV-induced degradation of DBM and subsequent anion-exchange reaction between CsPbCl3 and Br-, play a crucial role in the color change of PNCs-DBM. The properties of continuous fluorescence color change and enhanced fluorescence intensity enable the construction of sensitive and visible UV dosimeter. Furthermore, by integrated photochromic PNCs with flexible bracelet or PDMS substrate, a wearable UV sensor or a multi-indicator array for the detection of solar UV dosage is developed. This work may advance the fundamental understanding about photochromic perovskite, and show promising application of perovskite nanomaterials in easily fabricated, low-cost, visualized, and wearable solar UV dosimeter.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article