Your browser doesn't support javascript.
loading
All-Polymer Nanocomposite as Salt-Free Solid Electrolyte for Lithium Metal Batteries.
Olmedo-Martínez, Jorge L; Del Olmo, Rafael; Gallastegui, Antonela; Villaluenga, Irune; Forsyth, Maria; Müller, Alejandro J; Mecerreyes, David.
Afiliação
  • Olmedo-Martínez JL; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
  • Del Olmo R; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
  • Gallastegui A; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
  • Villaluenga I; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
  • Forsyth M; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
  • Müller AJ; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain.
  • Mecerreyes D; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
ACS Polym Au ; 4(1): 77-85, 2024 Feb 14.
Article em En | MEDLINE | ID: mdl-38371727
ABSTRACT
Solid polymer electrolytes that combine both a high lithium-ion transference number and mechanical properties at high temperatures are searched for improving the performance of batteries. Here, we show a salt-free all-polymer nanocomposite solid electrolyte for lithium metal batteries that improves the mechanical properties and shows a high lithium-ion transference number. For this purpose, lithium sulfonamide-functionalized poly(methyl methacrylate) nanoparticles (LiNPs) of very small size (20-30 nm) were mixed with poly(ethylene oxide) (PEO). The morphology of all-polymer nanocomposites was first investigated by transmission electron microscopy (TEM), showing a good distribution of nanoparticles (NPs) even at high contents (50 LiNP wt %). The crystallinity of PEO was investigated in detail and decreased with the increasing concentration of LiNPs. The highest ionic conductivity value for the PEO 50 wt % LiNP nanocomposite at 80 °C is 1.1 × 10-5 S cm-1, showing a lithium-ion transference number of 0.68. Using dynamic mechanic thermal analysis (DMTA), it was shown that LiNPs strengthen PEO, and a modulus of ≈108 Pa was obtained at 80 °C for the polymer nanocomposite. The nanocomposite solid electrolyte was stable with respect to lithium in a Li||Li symmetrical cell for 1000 h. In addition, in a full solid-state battery using LiFePO4 as the cathode and lithium metal as the anode, a specific capacity of 150 mAhg-1 with a current density of 0.05 mA cm-2 was achieved.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article