Your browser doesn't support javascript.
loading
Tolerance Factor and Phase Stability of the KCoO2-Type AMN2 Nitrides.
Shang, Kejing; Feng, Jie; Zhang, Bowen; Liu, Junwei; Ming, Xing; Kuang, Xiaojun.
Afiliação
  • Shang K; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
  • Feng J; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
  • Zhang B; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
  • Liu J; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
  • Ming X; College of Physics and Electronic Information Engineering, Key Laboratory of Low-Dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, P. R. China.
  • Kuang X; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
Inorg Chem ; 63(9): 4168-4175, 2024 Mar 04.
Article em En | MEDLINE | ID: mdl-38373068
ABSTRACT
In order to help understand the structural stability of KCoO2-type ternary nitrides AMN2, referring to perovskite structure, a tolerance factor t is proposed to describe the size effect on the phase/symmetry options of the experimentally accessible AMN2 nitrides. This leads to a range of t values above 0.946 for structurally stable KCoO2-type AMN2 nitrides with t values around 0.970 for the orthorhombic and tetragonal phase boundary. In contrast, most of AMN2 nitrides exhibit α-NaFeO2-type structure with t ∼ 0.898-0.946 and cations ordered or disordered rocksalt structure while t below 0.898. Employing the proposed criterion, the structure formation for other ternary AMN2 compositions with lanthanum and alkaline earth cations for the A sites were predicted, which was testified through the synthesis attempts and complemented by formation energy evaluations. The efforts to synthesize the ternary Lanthanide and alkaline earth-based AMN2 nitrides were unsuccessful, which could associate the structural instability with the large formation energies of lanthanide nitrides LaMN2 and the greater tolerance factor of 1.048 for BaTiN2. The experimentally already synthesized AMN2 nitrides could be categorized into three types with different tolerance factors, and scarce AMN2 nitrides with lower formation energies would be accessible using different synthetic routes beyond the traditional solid-state synthesis method.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article