Your browser doesn't support javascript.
loading
Small Molecule SHP2 Inhibitor LXQ-217 Affects Lung Cancer Cell Proliferation in Vitro and in Vivo.
Sun, Hao; Bai, Xiaoyi; Zhang, Yiting; Gao, Yanan; Dai, Jiajia; Xing, Pan; Zhu, Jiqiang; Liu, Ruihua; Wang, Zemin; Li, Xiangqian.
Afiliação
  • Sun H; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Bai X; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Zhang Y; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Gao Y; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Dai J; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, Shandong, China.
  • Xing P; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Zhu J; Shandong Linghai Biotechnology Co., Ltd., 250299, Jinan, Shandong, P. R. China.
  • Liu R; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Wang Z; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
  • Li X; State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, P. R. China.
Chem Biodivers ; 21(4): e202301610, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38379194
ABSTRACT

BACKGROUND:

SHP2 is highly expressed in a variety of cancer and has emerged as a potential target for cancer therapeutic agents. The identification of uncharged pTyr mimics is an important direction for the development of SHP2 orthosteric inhibitors.

METHODS:

Surface plasmon resonance analysis and cellular thermal shift assay were employed to verify the direct binding of LXQ-217 to SHP2. The inhibitory effect of LXQ-217 was characterized by linear Weaver-Burke enzyme kinetic analysis and BIOVIA Discovery Studio. The inhibition of tumor cell proliferation by LXQ-217 was characterized by cell viability assay, colony formation assays and hoechst 33258 staining. The inhibition of lung cancer proliferation in vivo was studied in nude mice after oral administration of LXQ-217.

RESULTS:

An electroneutral bromophenol derivative, LXQ-217, was identified as a competitive SHP2 inhibitor. LXQ-217 induced apoptosis and inhibited growth of human pulmonary epithelial cells by affecting the RAS-ERK and PI3 K-AKT signaling pathways. Long-term oral administration of LXQ-217 significantly inhibited the proliferation ability of lung cancer cells in nude mice. Moreover, mice administered LXQ-217 orally at high doses exhibited no mortality or significant changes in vital signs.

CONCLUSIONS:

Our findings on the uncharged orthosteric inhibitor provide a foundation for further development of a safe and effective anti-lung cancer drug.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pulmonares / Antineoplásicos Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pulmonares / Antineoplásicos Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article