Your browser doesn't support javascript.
loading
An integrated meta-omics approach reveals the different response mechanisms of two anammox bacteria towards fluoroquinolone antibiotics.
Qiao, Xuejiao; Ding, Lingyun; Fang, Fang; Fu, Chenkun; Wei, Ruqian; Chen, Yizhen; Zheng, Sihan; Wang, Xisong; Yan, Yan; Yang, Kai; Xu, Nan; Tao, Huchun; Yu, Ke; Zhang, Lijuan.
Afiliação
  • Qiao X; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Ding L; College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
  • Fang F; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Fu C; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Wei R; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Chen Y; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Zheng S; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Wang X; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Yan Y; State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510000, China.
  • Yang K; China MCC5 Group Corporation Limited, Chengdu 610023, China.
  • Xu N; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Tao H; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
  • Yu K; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address: yuke@pkusz.edu.cn.
  • Zhang L; Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address: zhanglj@pkusz.edu.cn.
Environ Int ; 185: 108505, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38394916
ABSTRACT
The emerging fluoroquinolone antibiotics (FQs) are highly influential in nitrogen removal from livestock wastewater. However, beyond the capability of nitrogen removal, little is known about the molecular mechanisms (e.g., shift of core metabolism and energy allocation) of different anaerobic ammonium-oxidizing bacteria (AnAOB) under continuous FQ stress. This study investigated the effects of ciprofloxacin, ofloxacin and their mixture at concentrations detected in livestock wastewater on two key anammox species in membrane bioreactors. It was found 20 µg/L FQs promoted nitrogen removal efficiency and community stability, and42-51 % of FQs were removed simultaneously. Integrated meta-omics analysis revealed varied gene expression patterns between the two dominant AnAOB, Candidatus Brocadia sapporoensis (B AnAOB) and Candidatus Kuenenia stuttgartiensis (K AnAOB). The nitrogen metabolic processes were bolstered in B AnAOB, while those involved in anammox pathway of K AnAOB were inhibited. This difference was tentatively attributed to the up-regulation of reactive oxygen species scavenger genes (ccp and dxf) and FQ resistance gene (qnrB72) in B AnAOB. Importantly, most enhanced core biosynthesis/metabolism of AnAOB and close cross-feeding with accompanying bacteria were also likely to contribute to their higher levels of biomass yield and metabolism activity under FQ stress. This finding suggests that B AnAOB has the advantage of higher nitrogen metabolism capacity over K AnAOB in livestock wastewater containing FQs, which is helpful for efficient and stable nitrogen removal by the functional anammox species.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Águas Residuárias / Compostos de Amônio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Águas Residuárias / Compostos de Amônio Idioma: En Ano de publicação: 2024 Tipo de documento: Article