Your browser doesn't support javascript.
loading
BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres for minimally invasive bone repair.
Jiang, Shengjie; Jing, Hua; Zhuang, Yu; Cui, Jinjie; Fu, Zeyu; Li, Dejian; Zhao, Cancan; Liaqat, Usman; Lin, Kaili.
Afiliação
  • Jiang S; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Jing H; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Zhuang Y; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Cui J; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Fu Z; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Li D; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Zhao C; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
  • Liaqat U; School of Chemical & Materials Engineering, National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan.
  • Lin K; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laborator
Carbohydr Polym ; 332: 121933, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38431401
ABSTRACT
Minimally invasive, efficient, and satisfactory treatment for irregular and lacunar bone defects is still a challenge. Alginate hydrogels serve as promising stem cell (SC) delivery systems for bone regeneration but are limited by low cellular viability, poor osteogenic differentiation, and insufficient mechanical support. Herein, we developed a BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres (BCHMs) system via a microfluidic method that possesses 1) a uniform size and good injectability to meet clinical bone defects with complex shapes, 2) high cellular viability maintenance and further osteogenic induction capacity, and 3) improved mechanical properties. As the main matrix, the sodium alginate hydrogel maintains the high viability of encapsulated BMSCs and efficient substance exchange. Enhanced mechanical properties and osteogenic differentiation of the BCHMs in vitro were observed with xonotlite (Ca6Si6O17(OH)2, CSH) nanowires incorporated. Furthermore, BCHMs with 12.5 % CSH were injected into rat femoral bone defects, and satisfactory in situ regeneration outcomes were observed. Overall, it is believed that BCHMs expand the application of polysaccharide science and provide a promising injectable bone substitute for minimally invasive bone repair.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Hidrogéis Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Hidrogéis Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article