Your browser doesn't support javascript.
loading
PI3K/AKT mediated De novo fatty acid synthesis regulates RIG-1/MDA-5-dependent type I IFN responses in BVDV-infected CD8+T cells.
Liu, Shan-Shan; Bai, Tong-Tong; Que, Tao-Lin; Luo, An; Liang, Yu-Xin; Song, Yu-Xin; Liu, Tian-Yi; Chen, Jin-Wei; Li, Jing; Li, Nan; Zhang, Ze-Chen; Chen, Nan-Nan; Liu, Yu; Zhang, Ze-Cai; Zhou, Yu-Long; Wang, Xue; Zhu, Zhan-Bo.
Afiliação
  • Liu SS; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Bai TT; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Que TL; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Luo A; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Liang YX; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Song YX; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Liu TY; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Chen JW; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Li J; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Li N; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Zhang ZC; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Chen NN; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Province, Daqing 163319, China.
  • Liu Y; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China; Engineering Research Center for Prevention and Control of
  • Zhang ZC; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China; Engineering Research Center for Prevention and Control of
  • Zhou YL; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China; Engineering Research Center for Prevention and Control of
  • Wang X; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China; Engineering Research Center for Prevention and Control of
  • Zhu ZB; College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China; Engineering Research Center for Prevention and Control of
Vet Microbiol ; 291: 110034, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38432076
ABSTRACT
Bovine viral diarrhea virus (BVDV) has caused massive economic losses in the cattle business worldwide. Fatty acid synthase (FASN), a key enzyme of the fatty acid synthesis (FAS) pathway, has been shown to support virus replication. To investigate the role of fatty acids (FAs) in BVDV infection, we infected CD8+T lymphocytes obtained from healthy cattle with BVDV in vitro. During early cytopathic (CP) and noncytopathic (NCP) BVDV infection in CD8+ T cells, there is an increase in de novo lipid biosynthesis, resulting in elevated levels of free fatty acids (FFAs) and triglycerides (TG). BVDV infection promotes de novo lipid biosynthesis in a dose-dependent manner. Treatment with the FASN inhibitor C75 significantly reduces the phosphorylation of PI3K and AKT in BVDV-infected CD8+ T cells, while inhibition of PI3K with LY294002 decreases FASN expression. Both CP and NCP BVDV strains promote de novo fatty acid synthesis by activating the PI3K/AKT pathway. Further investigation shows that pharmacological inhibitors targeting FASN and PI3K concurrently reduce FFAs, TG levels, and ATP production, effectively inhibiting BVDV replication. Conversely, the in vitro supplementation of oleic acid (OA) to replace fatty acids successfully restored BVDV replication, underscoring the impact of abnormal de novo fatty acid metabolism on BVDV replication. Intriguingly, during BVDV infection of CD8+T cells, the use of FASN inhibitors prompted the production of IFN-α and IFN-ß, as well as the expression of interferon-stimulated genes (ISGs). Moreover, FASN inhibitors induce TBK-1 phosphorylation through the activation of RIG-1 and MDA-5, subsequently activating IRF-3 and ultimately enhancing the IFN-1 response. In conclusion, our study demonstrates that BVDV infection activates the PI3K/AKT pathway to boost de novo fatty acid synthesis, and inhibition of FASN suppresses BVDV replication by activating the RIG-1/MDA-5-dependent IFN response.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus da Diarreia Viral Bovina / Vírus da Diarreia Viral Bovina Tipo 1 Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus da Diarreia Viral Bovina / Vírus da Diarreia Viral Bovina Tipo 1 Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article