Your browser doesn't support javascript.
loading
A capillary-based centrifugal indicator equipped with in situ pathogenic bacteria culture for fast antimicrobial susceptibility testing.
Chen, Longyu; Zhu, Meijia; Wang, Zhiyong; Wang, Hongliang; Cheng, Yongqiang; Zhang, Ziwei; Qi, Xiaoxiao; Shao, Yifan; Zhang, Xi; Wang, Hongwei.
Afiliação
  • Chen L; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Zhu M; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Wang Z; China Academy of Building Research, Beijing, 100013, China.
  • Wang H; National Deep Sea Center, Qingdao 266237, China.
  • Cheng Y; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Zhang Z; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Qi X; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Shao Y; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Zhang X; Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China. chengyongqiang@sdu.edu.cn.
  • Wang H; Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
Analyst ; 149(8): 2420-2427, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38488061
ABSTRACT
Antimicrobial resistance has become a major global health threat due to the misuse and overuse of antibiotics. Rapid, affordable, and high-efficiency antimicrobial susceptibility testing (AST) is among the effective means to solve this problem. Herein, we developed a capillary-based centrifugal indicator (CBCI) equipped with an in situ culture of pathogenic bacteria for fast AST. The bacterial incubation and growth were performed by macro-incubation, which seamlessly integrated the capillary indicator. Through simple centrifugation, all the bacterial cells were confined at the nanoliter-level capillary column. The packed capillary column height could linearly reflect the bacterial count, and the minimum inhibitory concentration (MIC) was determined based on the difference in the column height between the drug-added groups and the control group. The AST results could easily be determined by the naked eye or smartphone imaging. Thus, the CBCI realized the combination of macro-bacterial incubation and early micro assessment, which accelerated the phenotypic AST without complex microscopic counting or fluorescent labelling. The whole operation process was simple and easy to use. AST results could be determined for E. coli ATCC strains within 3.5 h, and the output results for clinical samples were consistent with the hospital reports. We expect this AST platform to become a useful tool in limiting antimicrobial resistance, especially in remote/resource-limited areas or in underdeveloped countries.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Escherichia coli / Antibacterianos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Escherichia coli / Antibacterianos Idioma: En Ano de publicação: 2024 Tipo de documento: Article