Your browser doesn't support javascript.
loading
Important role of DNA methylation hints at significant potential in tuberculosis.
Qin, Yuexuan; Li, Tianyue; An, Peiyan; Ren, Zhi; Xi, Jun; Tang, Bikui.
Afiliação
  • Qin Y; School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
  • Li T; School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
  • An P; School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
  • Ren Z; First Affiliated Hospital of Bengbu Medical University, Bengbu, 233030, Anhui Province, China.
  • Xi J; School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China. luckymq2014@foxmail.com.
  • Tang B; School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, 233030, Anhui Province, China. bikui_tang@163.com.
Arch Microbiol ; 206(4): 177, 2024 Mar 18.
Article em En | MEDLINE | ID: mdl-38494532
ABSTRACT
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, has persisted as a major global public health threat for millennia. Until now, TB continues to challenge efforts aimed at controlling it, with drug resistance and latent infections being the two main factors hindering treatment efficacy. The scientific community is still striving to understand the underlying mechanisms behind Mtb's drug resistance and latent infection. DNA methylation, a critical epigenetic modification occurring throughout an individual's growth and development, has gained attention following advances in high-throughput sequencing technologies. Researchers have observed abnormal DNA methylation patterns in the host genome during Mtb infection. Given the escalating issue of drug-resistant Mtb, delving into the role of DNA methylation in TB's development is crucial. This review article explores DNA methylation's significance in human growth, development and disease, and its role in regulating Mtb's evolution and infection processes. Additionally, it discusses potential applications of DNA methylation research in tuberculosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tuberculose / Mycobacterium tuberculosis Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tuberculose / Mycobacterium tuberculosis Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article