Your browser doesn't support javascript.
loading
Research on distributionally robust energy storage capacity allocation for output fluctuations in high permeability wind and solar distribution networks.
Wang, Xin; Sun, Bo; Ge, Cheng; Liu, Qian; Li, Zhiwei; Huang, Mengqi.
Afiliação
  • Wang X; State Grid Anhui Economic Research Institute, Hefei, China.
  • Sun B; State Grid Anhui Economic Research Institute, Hefei, China.
  • Ge C; State Grid Anhui Economic Research Institute, Hefei, China.
  • Liu Q; State Grid Anhui Economic Research Institute, Hefei, China.
  • Li Z; State Grid Anhui Economic Research Institute, Hefei, China.
  • Huang M; State Grid Anhui Economic Research Institute, Hefei, China.
PLoS One ; 19(3): e0299226, 2024.
Article em En | MEDLINE | ID: mdl-38502643
ABSTRACT
This paper presents a novel approach to addressing the challenges associated with energy storage capacity allocation in high-permeability wind and solar distribution networks. The proposed method is a two-phase distributed robust energy storage capacity allocation method, which aims to regulate the stochasticity and volatility of net energy output. Firstly, an energy storage capacity allocation model is established, which considers energy storage's investment and operation costs to minimize the total cost. Then, a two-stage distributed robust energy storage capacity allocation model is established with the confidence set of uncertainty probability distribution constrained by 1-norm and ∞-norm. Finally, a Column and Constraint Generation (C&CG) algorithm is used to solve the problem. The validity of the proposed energy storage capacity allocation model is confirmed by examining different wind and solar penetration levels. Furthermore, the model's superiority is demonstrated by comparing it with deterministic and robust models.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Energia Solar / Vento Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Energia Solar / Vento Idioma: En Ano de publicação: 2024 Tipo de documento: Article