Your browser doesn't support javascript.
loading
In-depth investigation of the effect of pH on the autofluorescence properties of DPF3b and DPF3a amyloid fibrils.
Mignon, Julien; Leyder, Tanguy; Mottet, Denis; Uversky, Vladimir N; Michaux, Catherine.
Afiliação
  • Mignon J; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur
  • Leyder T; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium. Electronic address: tanguy.leyder@unamur.be.
  • Mottet D; Gene Expression and Cancer Laboratory, GIGA-Molecular Biology of Diseases, University of Liège, B34, Avenue de l'Hôpital, 4000 Liège, Belgium. Electronic address: dmottet@uliege.be.
  • Uversky VN; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States. Electronic address: vuversky@usf.edu.
  • Michaux C; Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124156, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38508075
ABSTRACT
Double PHD fingers 3 (DPF3) protein exists as two splicing variants, DPF3b and DPF3a, the involvement of which in human cancer and neurodegeneration is beginning to be increasingly recognised. Both isoforms have recently been identified as intrinsically disordered proteins able to undergo amyloid fibrillation. Upon their aggregation, DPF3 proteins exhibit an intrinsic fluorescence in the visible range, referred to as deep-blue autofluorescence (dbAF). Comprehension of such phenomenon remaining elusive, we investigated in the present study the influence of pH on the optical properties of DPF3b and DPF3a fibrils. By varying the excitation wavelength and the pH condition, the two isoforms were revealed to display several autofluorescence modes that were defined as violet, deep-blue, and blue-green according to their emission range. Complementarily, analysis of excitation spectra and red edge shift plots allowed to better decipher their photoselection mechanism and to highlight isoform-specific excitation-emission features. Furthermore, the observed violation to Kasha-Vavilov's rule was attributed to red edge excitation shift effects, which were impacted by pH-mediated H-bond disruption, leading to changes in intramolecular charge and proton transfer, or π-electrons delocalisation. Finally, emergence of different autofluorescence emitters was likely related to structurally distinct fibrillar assemblies between isoforms, as well as to discrepancies in the amino acid composition of their aggregation prone regions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aminoácidos / Amiloide Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aminoácidos / Amiloide Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article