Your browser doesn't support javascript.
loading
Phase-sensitive deep reconstruction method for rapid multiparametric MR fingerprinting and quantitative susceptibility mapping in the brain.
Martinez, Jessica A; Yu, Victoria Y; Tringale, Kathryn R; Otazo, Ricardo; Cohen, Ouri.
Afiliação
  • Martinez JA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA. Electronic address: jessica.a.martinezm@gmail.com.
  • Yu VY; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA.
  • Tringale KR; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA.
  • Otazo R; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA.
  • Cohen O; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA.
Magn Reson Imaging ; 109: 147-157, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38513790
ABSTRACT

INTRODUCTION:

This study explores the potential of Magnetic Resonance Fingerprinting (MRF) with a novel Phase-Sensitivity Deep Reconstruction Network (PS-DRONE) for simultaneous quantification of T1, T2, Proton Density, B1+, phase and quantitative susceptibility mapping (QSM).

METHODS:

Data were acquired at 3 T in vitro and in vivo using an optimized EPI-based MRF sequence. Phantom experiments were conducted using a standardized phantom for T1 and T2 maps and a custom-made agar-based gadolinium phantom for B1 and QSM maps. In vivo experiments included five healthy volunteers and one patient diagnosed with brain metastasis. PSDRONE maps were compared to reference maps obtained through standard imaging sequences.

RESULTS:

Total scan time was 2 min for 32 slices and a resolution of [1 mm, 1 mm, 4.5 mm]. The reconstruction of T1, T2, Proton Density, B1+ and phase maps were reconstructed within 1 s. In the phantoms, PS-DRONE analysis presented accurate and strongly correlated T1 and T2 maps (r = 0.99) compared to the reference maps. B1 maps from PS-DRONE showed slightly higher values, though still correlated (r = 0.6) with the reference. QSM values showed a small bias but were strongly correlated (r = 0.99) with reference data. In the in vivo analysis, PS-DRONE-derived T1 and T2 values for gray and white matter matched reference values in healthy volunteers. PS-DRONE B1 and QSM maps showed strong correlations with reference values.

CONCLUSION:

The PS-DRONE network enables concurrent acquisition of T1, T2, PD, B1+, phase and QSM maps, within 2 min of acquisition time and 1 s of reconstruction time.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Processamento de Imagem Assistida por Computador Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Prótons / Processamento de Imagem Assistida por Computador Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article