Your browser doesn't support javascript.
loading
Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting.
Zhang, Miaoyi; Li, Xiaojuan; Pan, Yongbo; Qi, Dengfeng; Zhou, Dengbo; Chen, Yufeng; Feng, Junting; Wei, Yongzan; Zhao, Yankun; Li, Kai; Wang, Wei; Zhang, Lu; Xie, Jianghui.
Afiliação
  • Zhang M; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Li X; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Pan Y; Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China.
  • Qi D; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Zhou D; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Chen Y; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Feng J; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Wei Y; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Zhao Y; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Li K; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
  • Wang W; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China. Electronic address: wangwei@itbb.org.cn.
  • Zhang L; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China. Electronic address: luzhangtest@hainnu.edu.cn.
  • Xie J; National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China. Electronic address: xiejianghui@itbb.org.cn.
Microbiol Res ; 283: 127694, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38520836
ABSTRACT
Tomato fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a highly destructive disease, resulting in severe economic losses of global tomato production annually. An eco-friendly alternative to chemical fungicide using biological control agents (BCAs) is urgently needed. Here, Bacillus siamensis QN2MO-1 was isolated from Noli fruit and had a strong antagonistic activity against Fol in vitro and in vivo. Strain QN2MO-1 also exhibited a broad-spectrum antifungal activity against the selected 14 phytopathogenic fungi. The crude protein produced by strain QN2MO-1 could inhibit the spore germination of Fol and destroy the spore structure. It was closely related with the generation of chitinase and ß-1,3-glucanase secreted by strain QN2MO-1. In a pot experiment, the application of B. siamensis QN2MO-1 effectively alleviated the yellowing and wilting symptoms of tomato plants. The disease index and incidence rate were decreased by 72.72% and 80.96%, respectively. The rhizospheric soil in tomato plants owed a high abundance of microbial community. Moreover, strain QN2MO-1 also enhanced the plant growth and improved the fruit quality of tomato. Therefore, B. siamensis QN2MO-1 will be explored as a potential biocontrol agent and biofertilizer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacillus / Solanum lycopersicum / Fusarium Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacillus / Solanum lycopersicum / Fusarium Idioma: En Ano de publicação: 2024 Tipo de documento: Article