Your browser doesn't support javascript.
loading
Strong cathode electroluminescence biosensor based on CeO2 functionalized PCN-222@Ag NPs for sensitive detection of p-Tau-181 protein.
Jiang, Yun-Qi; Wei, Yu-Ping; Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Jin, Bao-Kang.
Afiliação
  • Jiang YQ; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of
  • Wei YP; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of
  • Liu XP; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of
  • Chen JS; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of
  • Mao CJ; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of
  • Jin BK; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, School of
J Colloid Interface Sci ; 665: 144-151, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38520931
ABSTRACT
Electrochemiluminescence (ECL) biosensors provide a convenient and high sensitivity method for early disease diagnosis. However, creating luminophore arrays relying on powerful ECL signals remains a daunting task. Porphyrin-centered metal organic frameworks (MOFs) exhibit remarkable potential in ECL sensing applications. In this paper, based on a simple one-pot synthesis method, PCN-222@Ag NPs doped with CeO2 was synthesized to enhance the ECL performance. Due to the strong catalytic ability of CeO2, the ECL signal strength of the new material PCN-222@CeO2@Ag NPs is much higher than that of the PCN-222@Ag NPs and PCN-222. The luminous properties of PCN-222@CeO2@Ag NPs become more intense and stable due to the excellent electronic conductivity of Ag NPs. Based on the fact that CuS@PDA composite can quench the ECL signal of PCN-222@CeO2@Ag NPs, we constructed a novel sandwich ECL immune sensor for the detection of phosphorylated Tau 181 (p-Tau-181) protein. The ECL sensor has a great linear relationship with p-Tau-181 protein concentration, ranging from 1 pg/mL to 100 ng/mL. The detection limit is as low as 0.147 pg/mL. This work provides new ideas for developing sensitive ECL sensors for the p-Tau-181 protein, the marker of Alzheimer's disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Nanopartículas Metálicas Idioma: En Ano de publicação: 2024 Tipo de documento: Article