Your browser doesn't support javascript.
loading
Matrix-free human pluripotent stem cell manufacturing by seed train approach and intermediate cryopreservation.
Ullmann, Kevin; Manstein, Felix; Triebert, Wiebke; Kriedemann, Nils; Franke, Annika; Teske, Jana; Mertens, Mira; Lupanow, Victoria; Göhring, Gudrun; Haase, Alexandra; Martin, Ulrich; Zweigerdt, Robert.
Afiliação
  • Ullmann K; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany. Ullmann.Kevin.HTTG@mh-hannover.de.
  • Manstein F; REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany. Ullmann.Kevin.HTTG@mh-hannover.de.
  • Triebert W; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Kriedemann N; REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Franke A; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Teske J; REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Mertens M; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Lupanow V; REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Göhring G; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Haase A; REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Martin U; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
  • Zweigerdt R; REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Stem Cell Res Ther ; 15(1): 89, 2024 Mar 25.
Article em En | MEDLINE | ID: mdl-38528578
ABSTRACT

BACKGROUND:

Human pluripotent stem cells (hPSCs) have an enormous therapeutic potential, but large quantities of cells will need to be supplied by reliable, economically viable production processes. The suspension culture (three-dimensional; 3D) of hPSCs in stirred tank bioreactors (STBRs) has enormous potential for fuelling these cell demands. In this study, the efficient long-term matrix-free suspension culture of hPSC aggregates is shown. METHODS AND

RESULTS:

STBR-controlled, chemical aggregate dissociation and optimized passage duration of 3 or 4 days promotes exponential hPSC proliferation, process efficiency and upscaling by a seed train approach. Intermediate high-density cryopreservation of suspension-derived hPSCs followed by direct STBR inoculation enabled complete omission of matrix-dependent 2D (two-dimensional) culture. Optimized 3D cultivation over 8 passages (32 days) cumulatively yielded ≈4.7 × 1015 cells, while maintaining hPSCs' pluripotency, differentiation potential and karyotype stability. Gene expression profiling reveals novel insights into the adaption of hPSCs to continuous 3D culture compared to conventional 2D controls.

CONCLUSIONS:

Together, an entirely matrix-free, highly efficient, flexible and automation-friendly hPSC expansion strategy is demonstrated, facilitating the development of good manufacturing practice-compliant closed-system manufacturing in large scale.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas de Cultura de Células / Células-Tronco Pluripotentes Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas de Cultura de Células / Células-Tronco Pluripotentes Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article